The objective of the study was to present both the possibilities of documenting the course and results of crime scene reconstruction using 3D laser scanning technology and the legal basis for application of this technology in evidence collection. The authors present the advantages of the aforementioned method, such as precision, objectivity, resistance of the measurement parameters to manipulation (comparing to other methods), high imaging resolution, touchless data recording, nondestructive testing, etc. Moreover, trough the analysis of the current legal regulations concerning image recording in criminal proceedings, the authors show 3D laser scanning technology to have a full complete ability to be applied in practice in documentation of the course and results of crime scene reconstruction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

crime scene
16
scene reconstruction
16
course crime
12
laser scanning
12
scanning technology
8
[documentation course
4
crime
4
scene
4
reconstruction
4
reconstruction virtual
4

Similar Publications

Many witnesses are intoxicated at crime scenes, yet little is known of their ability to accurately describe perpetrators to police. We therefore explored the impact of alcohol on delayed verbal face recall across two experiments. Participants were administered an alcoholic or non-alcoholic beverage prior to viewing either one or two unfamiliar female faces, which they described from memory the following day while in a sober state.

View Article and Find Full Text PDF

Inferring the ancestral origin of DNA evidence recovered from crime scenes is crucial in forensic investigations, especially in the absence of a direct suspect match. Ancestry informative markers (AIMs) have been widely researched and commercially developed into panels targeting multiple continental regions. However, existing forensic ancestry inference panels typically group East Asian individuals into a homogenous category without further differentiation.

View Article and Find Full Text PDF

Estimating the postmortem interval (PMI) is critical in the field of forensic science, and necrophagous insects play a significant role in this process. (Fabricius) (Diptera: Calliphoridae) is a common necrophagous insect species, making its rapid and accurate identification essential. However, commonly used molecular biology methods, such as DNA barcode, still have some limitations in identifying necrophagous insects as they are often complex, time-consuming, and reliant on laboratory instruments.

View Article and Find Full Text PDF

Development of a novel latent deoxyribonucleic acid detection technique for crime scene investigation using quartz tuning fork-based biosensor technology.

Forensic Sci Int

December 2024

Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:

The forensic Deoxyribonucleic Acid (DNA) fingerprinting is a tool for investigating crime scenes by identifying/tracing criminals and linking crime scenes. However, in cases where experts are unable to detect and identify any biological traces or human-derived cells at the crime scene or while testing the samples in the laboratories, all the advantages offered by forensic laboratories lose their significance. It becomes a waste of time, effort, and resources allocated to these laboratories.

View Article and Find Full Text PDF

Background: This scoping review aimed to explore the existing literature on teaching clinical reasoning in the field of forensic medicine.

Methods: The scoping review was conducted following the PRISMA extension for scoping reviews.

Results: The initial search yielded a total of 98 articles, of which 40 studies met the inclusion criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!