Contributions of Saccharomyces cerevisiae to understanding mammalian gene function and therapy.

Methods Mol Biol

Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.

Published: December 2011

Due to its genetic tractability and ease of manipulation, the yeast Saccharomyces cerevisiae has been extensively used as a model organism to understand how eukaryotic cells grow, divide, and respond to environmental changes. In this chapter, we reasoned that functional annotation of novel genes revealed by sequencing should adopt an integrative approach including both bioinformatics and experimental analysis to reveal functional conservation and divergence of complexes and pathways. The techniques and resources generated for systems biology studies in yeast have found a wide range of applications. Here we focused on using these technologies in revealing functions of genes from mammals, in identifying targets of novel and known drugs and in screening drugs targeting specific proteins and/or protein-protein interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-173-4_28DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
contributions saccharomyces
4
cerevisiae understanding
4
understanding mammalian
4
mammalian gene
4
gene function
4
function therapy
4
therapy genetic
4
genetic tractability
4
tractability ease
4

Similar Publications

Fluorescence recovery after photobleaching (FRAP) can be employed to investigate membrane lipid mixing of vacuoles in live budding yeast cells and distinguish the fused, hemi-fused or non-fused states of these organelles under physiological conditions. Here, we describe a protocol for labeling the outer and inner leaflets of vacuoles in live cells that allow to detect hemifusion intermediates and, thus, identify components necessary for fusion pore opening.

View Article and Find Full Text PDF

Cell-free in vitro assays offer several advantages for elucidating molecular mechanisms underlying various biological processes. Here, we describe a simple and quantitative in vitro assay using isolated yeast microsomes to measure homotypic ER membrane fusion. In this assay, membrane fusion between ER microsomes is monitored by reconstitution of luciferase activity from split luciferase fragments.

View Article and Find Full Text PDF

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue.

View Article and Find Full Text PDF

Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Ks and >500 rate constants in complex with multiple DNA sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!