A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The digastric muscle is less involved in pharyngeal swallowing in rabbits. | LitMetric

The swallowing reflex is centrally programmed by the lower brain stem, the so-called swallowing central pattern generator (CPG), and once the reflex is initiated, many muscles in the oral, pharyngeal, laryngeal, and esophageal regions are systematically activated. The mylohyoid (MH) muscle has been considered to be a "leading muscle" according to previous studies, but the functional role of the digastric (DIG) muscle in the swallowing reflex remains unclear. In the present study, therefore, the activities of single units of MH and DIG neurons were recorded extracellularly, and the functional involvement of these neurons in the swallowing reflex was investigated. The experiments were carried out on eight adult male Japanese white rabbits anesthetized with urethane. To identify DIG and MH neurons, the peripheral nerve (either DIG or MH) was stimulated to evoke action potentials of single motoneurons. Motoneurons were identified as such if they either (1) responded to antidromic nerve stimulation of DIG or MH in an all-or-none manner at threshold intensities and (2) followed stimulation frequencies of up to 0.5 kHz. As a result, all 11 MH neurons recorded were synchronously activated during the swallowing reflex, while there was no activity in any of the 7 DIG neurons recorded during the swallowing reflex. All neurons were anatomically localized ventromedially at the level of the caudal portion of the trigeminal motor nucleus, and there were no differences between the MH and DIG neuron sites. The present results strongly suggest that at least in the rabbit, DIG motoneurons are not tightly controlled by the swallowing CPG and, hence, the DIG muscle is less involved in the swallowing reflex.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00455-011-9363-zDOI Listing

Publication Analysis

Top Keywords

swallowing reflex
24
dig neurons
12
neurons recorded
12
swallowing
9
dig
9
muscle involved
8
dig muscle
8
reflex
7
neurons
6
digastric muscle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!