Structural and mechanistic commonalities of amyloid-β and the prion protein.

Prion

School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, Republic of South Africa (RSA).

Published: April 2013

Amyloid β (Aβ) is a major causative agent of Alzheime disease. This neurotoxic peptide is generated as a result of the cleavage of the Amyloid-Precursor-Protein (APP) by the action of beta secretase and gamma secretase. The neurotoxicity was previously thought to be the result of aggregation. However, recent studies suggest that the interaction of Aβ with numerous cell surface receptors such as N-methyl-D-aspartate (NMDA), receptor for advanced glycosylation end products (RAGE), P75 neurotrophin receptor (P75NTR) as well as cell surface proteins such as the cellular prion protein (PrP(c) ) and heparan sulfate proteoglycans (HSPG) strongly enhances Aβ induced apoptosis and thereby contributes to neurotoxicity. This review focuses on the molecular mechanism resulting in Aβ-shedding as well as Aβ-induced apoptotic processes, genetic risk factors for familial Alzheimer disease and interactions of Aβ with cell surface receptors and proteins, with particular emphasis on the cellular prion protein. Furthermore, comparisons are drawn between Alzheimer disease and prion disorders and the role of laminin, an extracellular matrix protein, glycosaminoglycans and the 37 kDa/67 kDa laminin receptor (LRP/LR) have been highlighted with regards to both neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226036PMC
http://dx.doi.org/10.4161/pri.5.3.17025DOI Listing

Publication Analysis

Top Keywords

prion protein
12
cell surface
12
surface receptors
8
cellular prion
8
alzheimer disease
8
structural mechanistic
4
mechanistic commonalities
4
commonalities amyloid-β and
4
prion
4
amyloid-β and prion
4

Similar Publications

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

The brain interactome of a permissive prion replication substrate.

Neurobiol Dis

January 2025

Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue.

View Article and Find Full Text PDF

Creutzfeldt-Jakob disease (CJD) is a rare, fatal, and transmissible neurodegenerative disorder caused by prion proteins. Handling specimens from individuals with suspected or confirmed cases presents a safety challenge to hospital workers including clinical laboratory staff. As no national guidelines exist, the clinical pathology laboratory must establish protocols for handling these specimens to ensure sufficient protective measures.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas.

View Article and Find Full Text PDF

Activation and memory of the heatshock response is mediated by Prion-like domains of sensory HSFs in Arabidopsis.

Mol Plant

January 2025

Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!