Objective: The purpose of this study was to test a first hypothesis that fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values continue to change in late childhood and adolescence and a second hypothesis that less mature white matter (WM) regions have a higher rate of change than WM regions that are relatively more mature.

Subjects And Methods: Eighty-seven healthy children (50 girls, 37 boys; mean age, 11.2 ± 3.6 years; range, 4.2-17.7 years) underwent six-direction diffusion-tensor imaging with a 3-T MRI system. Three neuroradiologists independently drew regions of interest in 10 WM regions and measured FA and ADC values. To test the first hypothesis, we correlated these values with subject age by linear regression analysis (p < 0.05). To test the second hypothesis, we determined whether regions with lower FA and higher ADC in the 4- to 7-year old group had a higher slope of FA increase and ADC decrease over the entire age range. For this assessment, we used linear regression analysis (p < 0.05) and curve fitting.

Results: In the test of the first hypothesis, increases in FA with age were noted in all WM regions and were statistically significant in six regions. Decreases in ADC values with age were noted in all brain regions except the genu of the corpus callosum. In all other regions except the splenium of the corpus callosum, the decreases were statistically significant. In the test of the second hypothesis, the relation between FA in the 4- to 7-year-old subjects and the FA increase in the entire sample was best described with a linear equation. The rate of age-related FA increase tended to be greater with lower initial FA (r = -0.384, p = 0.271). The relation between ADC in the 4- to 7-year-old subjects and ADC decrease in the entire population was best described with a second-order equation. The rate of age-related ADC decrease tended to be greater with higher initial ADC (r = 0.846, p = 0.001). For ADC values of 100 or less at age 4-7 years, the rate of ADC change with age tended to be decrease as initial ADC increased.

Conclusion: In general, both hypotheses were verified. Overall, FA values continue to increase and ADC values continue to decrease during childhood and adolescence. The most rapid changes were found in WM regions that were least mature in the first few years of the study period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614495PMC
http://dx.doi.org/10.2214/AJR.10.6382DOI Listing

Publication Analysis

Top Keywords

adc values
20
adc
13
childhood adolescence
12
test hypothesis
12
values continue
12
second hypothesis
12
adc decrease
12
regions
10
diffusion-tensor imaging
8
white matter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!