The Ca2+/calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation.

Endocrinology

Department of Pharmacology and Cancer Biology, Duke University Medical School, Durham, North Carolina 27710, USA.

Published: October 2011

When fed a standard chow diet, CaMKK2 null mice have increased adiposity and larger adipocytes than do wild-type mice, whereas energy balance is unchanged. Here, we show that Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is expressed in preadipocytes, where it functions as an AMP-activated protein kinase (AMPK)α kinase. Acute inhibition or deletion of CaMKK2 in preadipocytes enhances their differentiation into mature adipocytes, which can be reversed by 5-aminoimidazole-4-carboxamide ribonucleotide-mediated activation of AMPK. During adipogenesis, CaMKK2 expression is markedly decreased and temporally accompanied by increases in mRNA encoding the early adipogenic genes CCAAT/enhancer binding protein (C/EBP) β and C/EBP δ. Preadipocyte factor 1 has been reported to inhibit adipogenesis by up-regulating sex determining region Y-box 9 (Sox9) expression in preadipocytes and Sox9 suppresses C/EBPβ and C/EBPδ transcription. We show that inhibition of the CaMKK2/AMPK signaling cascade in preadipocytes reduces preadipocyte factor 1 and Sox9 mRNA resulting in accelerated adipogenesis. We conclude that CaMKK2 and AMPK function in a signaling pathway that participates in the regulation of adiposity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176646PMC
http://dx.doi.org/10.1210/en.2011-1107DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
ca2+/calmodulin-dependent protein
8
kinase kinase
8
kinase camkk2
8
preadipocyte factor
8
kinase
6
camkk2
6
camkk2 inhibits
4
inhibits preadipocyte
4
preadipocyte differentiation
4

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!