Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The farnesoid X receptor (FXR) is a nuclear receptor whose activation leads to alterations in pathways involved in energy metabolism. For example, it serves as a bile acid receptor in tissues such as the liver, and as an energy metabolism regulator in liver, muscle and adipose tissue. However, the effects of FXR activation are not exclusive to the tissue where it is present, because receptor crosstalk affects tissues throughout the body. It has been demonstrated that FXR regulates the metabolism of not just bile acids, but also of fats and hydrocarbon metabolites. FXR is currently under study as a therapeutic target for the treatment of diseases of excess, such as diabetes. Here we review the effects of FXR activation in the response of an organism to excess energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tem.2011.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!