Objective: The objective of the study was to determine the feasibility of detecting fetal brain lactate, a marker of fetal metabolic acidemia, using a noninvasive technique, proton magnetic resonance spectroscopy ((1)H MRS), in intrauterine growth-restricted (IUGR) fetuses.
Study Design: In vivo human fetal brain lactate detection was determined by (1)H MRS in 5 fetuses with IUGR. Oxygenation and acid-base balance data were obtained at birth.
Results: (1)H MRS analysis showed the presence of a lactate peak in the brain of the most severely affected IUGR fetus, with abnormal umbilical artery Doppler and fetal heart rate tracing. This finding was consistent with the low oxygen content and high lactic acid concentration observed in umbilical blood obtained at delivery.
Conclusion: (1)H MRS allows the noninvasive detection of cerebral lactate in IUGR fetuses. Lactate detected by (1)H MRS may represent a possible marker of in utero cerebral injury or underperfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajog.2011.06.020 | DOI Listing |
Sci Rep
January 2025
Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls.
View Article and Find Full Text PDFTalanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biology, University of the Balearic Islands, Palma 07122, Spain. Electronic address:
Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening.
View Article and Find Full Text PDFPLoS One
January 2025
University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, United States of America.
Nurse sharks (Ginglymostoma cirratum), especially juveniles, are often encountered by near-shore and shore-based recreational anglers and are suggested to exhibit minimal behavioral and physiological responses to capture, largely based on studies of adults using commercial or scientific fishing methods. To quantify the sub-lethal effects of recreational angling on juvenile nurse sharks, 27 individuals (across 31 angling events) were caught using hook-and-line fishing methods. Over a 30-min period, 4 blood samples were taken with variable time intervals between sampling (i.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!