Reduced oxygen concentration enhances conversion of embryonic stem cells to epiblast stem cells.

Stem Cells Dev

Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kinki University Faculty of Medicine, Osaka, Japan.

Published: May 2012

Recently, an additional type of pluripotent stem cell-line derived from mouse embryos has been established and termed epiblast stem cell (EpiSC), and is expected to be an important tool for studying the mechanisms of maintenance of pluripotency since they depend on basic fibroblast growth factor-MAPK and Activin A-Smad2/3 signaling to maintain pluripotency, unlike mouse embryonic stem cells (ESCs). Further, because of the similarities between mouse EpiSCs and human ESCs, EpiSCs are expected to be effective experimental models for human stem cell therapy. Recently, study for conversion from ESC state to EpiSC state or reversion from EpiSC state to ESC state has attracted interest since these techniques may lead to increasing the potential of pluripotent stem cells and our knowledge about their developmental status. In the present study, we find that a low oxygen concentration in culture environment accelerated, improved, and stabilized the EpiSC state of the converted cells from the ESC state using Oct4ΔPE-GFP transgenic ESCs. Induced EpiSCs (iEpiSCs) in hypoxia possess closer gene expression patterns to native EpiSCs, and bisulfite sequences for the promoter regions of Stella and Oct4 genes have elucidated that the iEpiSC gain EpiSC-specific methylation patterns in hypoxia. Our data provide evidence that oxygen concentration is an important factor for establishment of the EpiSC-specific state.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2011.0322DOI Listing

Publication Analysis

Top Keywords

stem cells
16
oxygen concentration
12
esc state
12
episc state
12
embryonic stem
8
epiblast stem
8
pluripotent stem
8
stem cell
8
stem
7
state
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!