This paper describes the main distinguishing characteristics of female and male pupae and adults of cocoa pod borer, Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillariidae). Two pairs of tubercles present on the sterna of segments IX and X of the female pupae are useful in differentiating female from male pupae. The female genital opening is located anterior to the first pair of tubercles and forms a plateau in which the center has a light brown longitudinal depression that indicates the female genital opening. The male genital opening is a conspicuous, brown, longitudinal slit located between the two pairs of tubercles. The sex of the adult moth can be determined by examining the ventrocaudal segments of the abdomen. The last segment of the female abdomen is white, compressed laterally and at the tip, and the hairy anal papillae can be seen. In the male, the ventrocaudal end of the abdomen is black and robust. This information will be useful for laboratory and field diagnosis and while working on sex ratios of this important pest of cocoa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281445PMC
http://dx.doi.org/10.1673/031.011.5201DOI Listing

Publication Analysis

Top Keywords

genital opening
12
pupae adults
8
adults cocoa
8
cocoa pod
8
pod borer
8
borer conopomorpha
8
conopomorpha cramerella
8
female male
8
male pupae
8
pairs tubercles
8

Similar Publications

Kisspeptin control of hypothalamus-pituitary-ovarian functions.

Vitam Horm

January 2025

Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India.

The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Tracking Abdominal-B Expression and Function in the Fly Internal Reproductive System by Explants Imaging.

Methods Mol Biol

January 2025

Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain.

Hox genes specify identities mainly in the anteroposterior axis in various animal tissues, some of them forming part of the internal organs and systems. The expression and activity of these genes have been analyzed mainly in Drosophila melanogaster, the fruit fly, and in mouse; in the former, the functional study of Hox genes has been detailed predominantly in epidermal structures, but their role in internal organs poses some challenges, particularly in pupae. One of these genes, Abdominal-B, dictates the development of many internal organs in the posterior abdomen of the fly, yet techniques for its analysis, like in vivo time-lapse, have long been impractical.

View Article and Find Full Text PDF

46,XY sex reversal 11 (SRXY11) is a rare and recently identified form of 46,XY difference in sexual development (DSD), caused by variants in the DEAH-Box Helicase 37 gene (). is crucial for ribosome biogenesis, but its specific role in gonadal development remains unclear. The genital phenotype varies widely, ranging from typical female to typical male.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!