Molecular dynamics simulations have been performed on the high temperature phase of the bis-thiourea pyridinium nitrate inclusion compound. Three different potential models have been tested. In the three cases, the analysis of the centre of mass motion of pyridium cations indicates that they do not diffuse along the channels. However, only the potential including a specific hydrogen bonding interaction provides a description of the in-plane cation reorientation in reasonable agreement with the experimental results deduced from quasielastic neutron scattering (QENS) measurements. This model shows that the pyridinium cation reorients among three non-equivalent positions and gives reorientational correlation times comparable to those extracted from the QENS data. We conclude that the particular geometry of this reorientation is due to the formation of hydrogen bonds of different strength between the pyridinium cation of the guest sublattice and the host sublattice.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3626128DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
bis-thiourea pyridinium
8
pyridinium nitrate
8
nitrate inclusion
8
inclusion compound
8
pyridinium cation
8
dynamics simulation
4
cation
4
simulation cation
4
cation dynamics
4

Similar Publications

Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Molecular dynamics work on thermal conductivity of SiGe nanotubes.

J Mol Model

January 2025

School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.

View Article and Find Full Text PDF

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

The self-assembly of fibrin is a vital process in blood clotting, primarily facilitated by the interactions between knobs "A" and "B" in the central E region of one molecule and the corresponding holes "a" and "b" in the peripheral D regions of two other fibrin molecules. However, the precise function of the interactions between knob "B" and hole "b" during fibrin polymerization remains a subject of ongoing debate. The present study focuses on investigating intermolecular interactions between knob "B" and hole "b".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!