A series of multibenzimidazole functionalized branched polyethylenimine (MPEI) molecules with varied benzimidazole substitution are designed and synthesized to study how hydrogen bonds of benzimidazole can be enhanced through the branching structure of polymer chains. The reduction of H-bonding and the increment of interatomic distance distribution initiate an increase in proton conductivity with temperature as detailed analyses by temperature dependence Fourier transform infrared spectroscopy and radial distribution function calculated from temperature dependence X-ray diffraction technique. MPEIs with a higher benzimidazole substitution form a greater number of hydrogen bonds together with the lowering of chain mobility. In combination with the proton conductivity evaluation, bPEI with 19.7% benzimidazole substitution is a preferable condition since at this condition both hydrogen bond and chain mobility are in good balance and favor the proton transfer resulting in a significant proton conductivity ∼10(-5) S cm(-1) in the case of the pure sample in pellet form and ∼10(-4) S cm(-1) in the case of the blend with PVA in the membrane form measuring at 190 °C under anhydrous condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp205491w | DOI Listing |
Inorg Chem
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Three cases of aminobenzoic acid hybrid polyoxotungstates, Na(HO)[(HPWO) (OCCHNH)]·7HO (), K(HO)[(AsWO)(OCCHNH)]·4HO (), and [(HN(CH)]Na(HO)[(SbWO) (OCCHNH)]·7HO (), were successfully synthesized. This is the first report of the successful assembly of the hexanuclear {XW} (X = HP, As, or Sb) clusters and organic carboxylic acid (para aminobenzoic acid) ligands. All three hybrids feature a common {XW} unit composed of a six-membered {WO} octahedral ring capped by one {XO} trigonal pyramid.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.
This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai, 201203, P.R. China.
Under extreme conditions, condensed matters are subject to undergo a phase transition and there have been many attempts to find another form of hydroxide stabilized over HO. Here, using Density Functional Theory (DFT)-based crystal structure prediction including zero-point energy, it is that proton superoxide (HO), the lightest superoxide, can be stabilized energetically at high pressure and temperature conditions. HO is metallic at high pressure, which originates from the 𝜋 orbitals overlap between adjacent superoxide anions (O ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!