Molecular-level engineering of protein physical hydrogels for predictive sol-gel phase behavior.

Biomacromolecules

Department of Bioengineering, Stanford University, 476 Lomita Mall, Stanford, California 94305, United States.

Published: October 2011

Predictable tuning of bulk mechanics from the molecular level remains elusive in many physical hydrogel systems because of the reliance on nonspecific and nonstoichiometric chain interactions for network formation. We describe a mixing-induced two-component hydrogel (MITCH) system, in which network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with a simple polymer physics model, we manipulate the polypeptide binding interactions and demonstrate the direct ability to predict the resulting effects on network cross-linking density, sol-gel phase behavior, and gel mechanics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253016PMC
http://dx.doi.org/10.1021/bm200959eDOI Listing

Publication Analysis

Top Keywords

sol-gel phase
8
phase behavior
8
binding interactions
8
molecular-level engineering
4
engineering protein
4
protein physical
4
physical hydrogels
4
hydrogels predictive
4
predictive sol-gel
4
behavior predictable
4

Similar Publications

Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.

View Article and Find Full Text PDF

This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m/g).

View Article and Find Full Text PDF

The pristine phases SS1(ZnO), SS2(MnO), and SS3 (CuO) photocatalysts and mixed phases of ZnO-based nanocomposites were synthesized by the sol-gel method. Whereas SS4 (g-CN) was prepared through polymerization of urea. The synthesized photocatalysts were characterized using TGA-DTA, XRD, DRS, PL, DLS, FTIR, SEM, TEM, and HRTEM.

View Article and Find Full Text PDF

This study explored the structural, optical, antibacterial, and dielectric properties of TiO nanoparticles synthesized using two distinct approaches: sol-gel and biosynthesis. Density functional tight binding (DFTB+) and density functional theory (DFT) calculations were employed alongside experimental techniques to gain a comprehensive understanding of the electronic-property relationships. peel extract was utilized for the biosynthesis method.

View Article and Find Full Text PDF

In this study, the rhombohedral crystalline pure phase BiFeO (BFO) of irregularly shaped spherical particles of ≈100 nm and energy bandgap of ≈2.31 eV are synthesized by sol-gel auto-combustion method and explored as electrode material for photo-assisted supercapacitor. The electronic structure studies revealed that the coexistence of heterovalent Bi and Fe elements accelerated the electrochemical redox kinetics and photo-assisted charge storage properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!