We describe a cytochemical method for localizing mercury at the electron microscopic level in the yeast Saccharomyces cerevisiae. After addition of a lethal concentration of mercuric chloride to growing yeast cells, mercury was associated with the cell wall and cytoplasmic membrane. Little or no mercury was present in the cytoplasm. Electron probe X-ray microanalysis (EPMA) confirmed that the cytochemical reaction, visualized as mercury-silver complexes, was localized in dense bodies consisting of a core of mercury sulfide polymers surrounded by a shell of silver atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1177/38.6.2186088DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
mercuric chloride
8
mercury
5
cytochemical localization
4
localization mercury
4
mercury saccharomyces
4
cerevisiae treated
4
treated mercuric
4
chloride describe
4
describe cytochemical
4

Similar Publications

Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS).

View Article and Find Full Text PDF

FRET analysis of the unwrapping of nucleosomal DNA containing a sequence characteristic of the + 1 nucleosome.

Sci Rep

January 2025

Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.

Sequence-dependent mechanical properties of DNA could play essential roles in nuclear processes by affecting histone-DNA interactions. Previously, we found that the DNA entry site of the first nucleosomes from the transcription start site (+ 1 nucleosome) in budding yeast enriches AA/TT steps, but not the exit site, and the biased presence of AA/TT in the entry site was associated with the transcription levels of yeast genes. Because AA/TT is a rigid dinucleotide step, we considered that AA/TT causes DNA unwrapping.

View Article and Find Full Text PDF

Transcriptional activation and coactivator binding by yeast Ino2 and human proto-oncoprotein c-Myc.

Curr Genet

January 2025

Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.

Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast.

View Article and Find Full Text PDF

Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress.

Cell Commun Signal

January 2025

Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100, Spain.

Background: Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcriptional repressors of the G1/S transcriptional program, yeast functional homologs of the Retinoblastoma family proteins in mammalian cells.

View Article and Find Full Text PDF

Synergistic utilization of glucose and xylose for the myo-inositol biosynthesis in recombinant BL21.

Prep Biochem Biotechnol

January 2025

College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China.

Myo-inositol is an active sugar alcohol which has important physiological functions. In this study, an engineered strain that could simultaneously utilize glucose and xylose to produce myo-inositol was constructed, and its fermentation performance was determined. Firstly, the gene was deleted to make BL21 capable of utilizing glucose and xylose simultaneously as mixed carbon source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!