AI Article Synopsis

  • Early-life methyl-donor deficiency in pregnant rats was found to negatively impact growth, resulting in smaller birth weights, fewer offspring, and higher mortality rates shortly after birth.
  • Methyl deficiency during pregnancy significantly reduced pancreatic endocrine mass in male offspring, but only led to mild impairments in glucose tolerance and insulin secretion.
  • In contrast, postweaning methyl deficiency improved glucose tolerance despite lower insulin secretion, suggesting that the timing of methyl donor deficiency plays a crucial role in metabolic health outcomes.

Article Abstract

Background/aims: Early-life methyl-donor deficiency is implicated in growth restriction and later-life development of type 2 diabetes mellitus. We ascertained whether dietary methyl-donor deficiency in the mother during pregnancy or during postweaning growth in the rat would impair glucose homeostasis, insulin secretion and pancreatic endocrine development in young adults.

Methods: Effects of maternal methyl deficiency (90% deficiency in methionine, folate and choline) were compared with those of postweaning methyl deficiency and with control diets for effects on growth, impaired glucose tolerance, insulin secretion and pancreas development in offspring. Studies focussed on male offspring, which have been shown more susceptible to early-life influences on later disease development.

Results: Prenatal methyl deficiency delayed delivery, restricted birthweight by 22%, reduced litter size by 33% and increased offspring mortality to 23% shortly after birth. It reduced relative endocrine pancreatic mass in adult male offspring to 46% of endocrine mass in controls, but only mildly impaired their glucose tolerance and insulin secretion. In contrast, postweaning methyl deficiency restricted growth of male rats and reduced relative pancreatic endocrine mass (-40%), but improved their glucose tolerance, despite decreased insulin secretion.

Conclusion: It is clear that the global undernutrition (UN) during pregnancy in rodents alters glucose metabolism in adult offspring. It has been hypothesised that alterations in epigenetic mechanisms may underlie this phenotype. However, removing all methyl donors during pregnancy, which are essential for epigenetic processes in development, did not cause any alteration in glucose metabolism in offspring as seen in the global UN model.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000330227DOI Listing

Publication Analysis

Top Keywords

methyl deficiency
20
insulin secretion
12
glucose tolerance
12
deficiency
8
alters glucose
8
glucose homeostasis
8
methyl-donor deficiency
8
pancreatic endocrine
8
postweaning methyl
8
impaired glucose
8

Similar Publications

Background: Heart failure with preserved ejection fraction (HFpEF) is linked to prolonged endoplasmic reticulum (ER) stress. P21-activated kinase 2 (Pak2) facilitates a protective ER stress response. This study explores the mechanism and role of Pak2 in HFpEF pathology.

View Article and Find Full Text PDF

The tRNA methyltransferase 1 (TRMT1) enzyme catalyzes the N2,N2-dimethylguanosine (m2,2G) modification in tRNAs. Intriguingly, vertebrates encode an additional tRNA methyltransferase 1-like (TRMT1L) paralog. Here, we use a comprehensive tRNA sequencing approach to decipher targets of human TRMT1 and TRMT1L.

View Article and Find Full Text PDF

Background: Lingual taste cells (LTCs) are taste buds' sensory cells that modulate gustation. This study’s aim is to assess whether it can be successfully implanted in hippocampus, modulating learning and memory deficits observed in Alzheimer’s Dementia (AD).

Methods: Retrospective trials on rodents i.

View Article and Find Full Text PDF

Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation.

View Article and Find Full Text PDF

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!