Correct replication of the genome and protection of its integrity are essential for cell survival. In a high-throughput screen studying H2AX phosphorylation, we identified Wee1 as a regulator of genomic stability. Wee1 down-regulation not only induced H2AX phosphorylation but also triggered a general deoxyribonucleic acid (DNA) damage response (DDR) and caused a block in DNA replication, resulting in accumulation of cells in S phase. Wee1-deficient cells showed a decrease in replication fork speed, demonstrating the involvement of Wee1 in DNA replication. Inhibiting Wee1 in cells treated with short treatment of hydroxyurea enhanced the DDR, which suggests that Wee1 specifically protects the stability of stalled replication forks. Notably, the DDR induced by depletion of Wee1 critically depends on the Mus81-Eme1 endonuclease, and we found that codepletion of Mus81 and Wee1 abrogated the S phase delay. Importantly, Wee1 and Mus81 interact in vivo, suggesting direct regulation. Altogether, these results demonstrate a novel role of Wee1 in controlling Mus81 and DNA replication in human cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160579PMC
http://dx.doi.org/10.1083/jcb.201101047DOI Listing

Publication Analysis

Top Keywords

dna replication
12
wee1
10
genomic stability
8
mus81-eme1 endonuclease
8
h2ax phosphorylation
8
replication
7
wee1 controls
4
controls genomic
4
stability replication
4
replication regulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!