Cerebral cavernous malformations (CCM) are vascular malformations of the central nervous system (CNS) that lead to cerebral hemorrhages. Familial CCM occurs as an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. Constitutive or tissue-specific ablation of any of the Ccm genes in mice previously established the crucial role of Ccm gene expression in endothelial cells for proper angiogenesis. However, embryonic lethality precluded the development of relevant CCM mouse models. Here, we show that endothelial-specific Ccm2 deletion at postnatal day 1 (P1) in mice results in vascular lesions mimicking human CCM lesions. Consistent with CCM1/3 involvement in the same human disease, deletion of Ccm1/3 at P1 in mice results in similar CCM lesions. The lesions are located in the cerebellum and the retina, two organs undergoing intense postnatal angiogenesis. Despite a pan-endothelial Ccm2 deletion, CCM lesions are restricted to the venous bed. Notably, the consequences of Ccm2 loss depend on the developmental timing of Ccm2 ablation. This work provides a highly penetrant and relevant CCM mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171098PMC
http://dx.doi.org/10.1084/jem.20110571DOI Listing

Publication Analysis

Top Keywords

ccm lesions
12
ccm
10
developmental timing
8
timing ccm2
8
ccm2 loss
8
cerebral cavernous
8
cavernous malformations
8
ccm genes
8
relevant ccm
8
ccm mouse
8

Similar Publications

Diagnostic Algorithm Using Multimodal Imaging for the Differential Diagnosis of Intra-Cardiac Masses.

J Clin Med

January 2025

Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.

Cardiac masses are complex clinical conditions that frequently pose diagnostic challenges in cardiology practice. These masses can form within heart chambers or near the pericardium and are generally categorized as either non-neoplastic or neoplastic. These latter are further classified into benign and malignant (primary and secondary or metastatic).

View Article and Find Full Text PDF

The aim of the study was todescribe the clinical features, optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging in patients with choroidal and retinal tumors. Ninety eyes of 89 patients with treatment-naive macular, midperipheral, and juxtapapillary choroidal and retinal tumors were retrospectively included in the study. All patients underwent a complete ophthalmic examination, B-mode ultrasonography, OCT, and FAF imaging.

View Article and Find Full Text PDF

Equine pastern dermatitis (EPD) is a multifactorial disease with a change in the skin microbiome. The present study monitored the influence of Biocenol™ 4/8 D37 CCM 9015 stabilized on alginite on the skin microbiota of healthy horses and model patients with EPD. Based on clinical signs, EPD lesions were identified as exudative or proliferative forms.

View Article and Find Full Text PDF

Increases in mean lesional iron content by quantitative susceptibility mapping (QSM) by ≥6% and/or vascular permeability by dynamic contrast enhanced quantitative perfusion (DCEQP) by ≥40% on MRI have been associated with new symptomatic hemorrhage (SH) in cerebral cavernous malformations (CCMs). It is not known if plasma biomarkers can reflect these changes within the lesion proper. This cohort study enrolled 46 CCM patients with SH in the prior year.

View Article and Find Full Text PDF

Introduction: Corneal confocal microscopy (CCM) detects neurodegeneration in mild cognitive impairment (MCI) and dementia and identifies subjects with MCI who develop dementia. This study assessed whether abnormalities in corneal endothelial cell (CEC) morphology are related to corneal nerve morphology, brain volumetry, cerebral ischemia, and cognitive impairment in MCI and dementia.

Methods: Participants with no cognitive impairment (NCI), MCI, and dementia underwent CCM to quantify corneal endothelial cell density (CECD) and area (CECA), corneal nerve fiber morphology, magnetic resonance imaging (MRI) brain volumetry, and severity of brain ischemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!