Clinically relevant anti-epileptic drug interactions.

J Int Med Res

First Neurological Clinic, University of Messina, Italy.

Published: June 1990

Anti-epileptic drugs frequently interact due to pharmacokinetic features (induction or inhibition of metabolism, production of active metabolites, low therapeutic indices) and the need for prolonged treatment with possible addition of other drugs to treat concomitant diseases. The most important pharmacokinetic interactions are those that inhibit phenytoin, carbamazepine and phenobarbitone metabolism and thus increase their toxicity. Drugs inhibiting metabolism include antibiotic macrolides, chloramphenicol, isoniazide, some sulphonamides, propoxyphene, cimetidine, valproic acid and sulthiame. Anti-epileptic drugs can induce hepatic microsomal enzymes and, therefore, may increase metabolism of corticosteroids, oral contraceptives, oral anticoagulants, cardiovascular agents, antibiotics, chemotherapeutic agents, psychotropic drugs and non-opiate analgesics, thereby reducing their efficacy. Advantageous pharmacodynamic interactions include synergism of ethosuximide plus valproic acid and of carbamazepine plus valproic acid. A pharmacodynamic mechanism may be responsible for the reduced sensitivity of chronically treated epileptics to some neuromuscular blockers.

Download full-text PDF

Source
http://dx.doi.org/10.1177/030006059001800102DOI Listing

Publication Analysis

Top Keywords

valproic acid
12
anti-epileptic drugs
8
drugs
5
clinically relevant
4
relevant anti-epileptic
4
anti-epileptic drug
4
drug interactions
4
interactions anti-epileptic
4
drugs frequently
4
frequently interact
4

Similar Publications

Herein, we present a case of idiopathic generalized epilepsy (IGE) manifesting as de novo late-onset absence status epilepticus (ASE) following mild coronavirus disease 2019 (COVID-19). A woman in her 40s presented with persistent 3-5.5 Hz generalized spike-wave complexes (SWCs) on electroencephalography (EEG).

View Article and Find Full Text PDF

Exposure to valproic acid (VPA) during embryogenesis has become a valuable tool for modeling neurodevelopmental disorders in animal models such as zebrafish (). This article examines the effects of embryonic exposure to VPA in zebrafish on the basis of 39 articles sourced from PubMed and Google Scholar. We conducted a systematic review and meta-analysis to elucidate the common impacts of VPA exposure and reported that VPA significantly altered development at various levels.

View Article and Find Full Text PDF

Background: Recent guidance from UK health authorities strongly cautions against the use of valproic acid (VPA) in persons under 55 because of reevaluated risk of teratogenicity.

Objective: To summarize the extant literature documenting VPA-associated anatomical, behavioral, and cognitive teratogenicity.

Method: Pubmed, Medline, Cochrane Library, PsychInfo, Embase, Scopus, Web of Science, and Google Scholar were searched in accordance with PRISMA guidelines.

View Article and Find Full Text PDF

Sodium valproate- a salt of valproic acid (VPA), is an anticonvulsant used in the treatment of epilepsy and a range of psychiatric conditions that include panic attacks, anxiety, post-traumatic stress, migraine and bipolar disorder etc. VPA can cause direct damage to many tissues due to accumulation of toxic metabolites. Nowadays, phytochemicals are amongst the best options for the treatment of diseases.

View Article and Find Full Text PDF

Unlabelled: Valproic acid (VPA) demonstrates teratogenic effects during pregnancy. Prenatal exposure to VPA may result in autism spectrum disorder (ASD) -like phenotypes. Apigenin, a natural flavonoid, has been shown to have neuroprotective impacts due to its antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!