Despite their importance as potent odors that contribute to the aroma of numerous cheeses, S-methyl thioesters formation pathways have not been fully established yet. In a first part of our work, we demonstrated that Brevibacterium antiquum and Brevibacterium aurantiacum could produce S-methyl thioesters using short-chain fatty acids or branched-chain amino acids as precursors. Then, we focused our work on L-leucine catabolism using liquid chromatography tandem mass spectrometry and gas chromatography-mass spectrometry analyses coupled with tracing experiments. For the first time, several acyl-CoAs intermediates of the L-leucine to thioesters conversion pathway were identified. S-methyl thioisovalerate was produced from L-leucine, indicating that this amino acid was initially transaminated. Quite interestingly, data also showed that other S-methyl thioesters, e.g., S-methyl thioacetate or S-methyl thioisobutyrate, were produced from L-leucine. Enzymatic and tracing experiments allowed for postulating catabolic pathways leading to S-methyl thioesters biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-011-3500-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!