Testing multiple coordination constraints with a novel bimanual visuomotor task.

PLoS One

Motor Control Laboratory, Research Center of Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.

Published: February 2012

The acquisition of a new bimanual skill depends on several motor coordination constraints. To date, coordination constraints have often been tested relatively independently of one another, particularly with respect to isofrequency and multifrequency rhythms. Here, we used a new paradigm to test the interaction of multiple coordination constraints. Coordination constraints that were tested included temporal complexity, directionality, muscle grouping, and hand dominance. Twenty-two healthy young adults performed a bimanual dial rotation task that required left and right hand coordination to track a moving target on a computer monitor. Two groups were compared, either with or without four days of practice with augmented visual feedback. Four directional patterns were tested such that both hands moved either rightward (clockwise), leftward (counterclockwise), inward or outward relative to each other. Seven frequency ratios (3∶1, 2∶1, 3∶2, 1∶1, 2∶3. 1∶2, 1∶3) between the left and right hand were introduced. As expected, isofrequency patterns (1∶1) were performed more successfully than multifrequency patterns (non 1∶1). In addition, performance was more accurate when participants were required to move faster with the dominant right hand (1∶3, 1∶2 and 2∶3) than with the non-dominant left hand (3∶1, 2∶1, 3∶2). Interestingly, performance deteriorated as the relative angular velocity between the two hands increased, regardless of whether the required frequency ratio was an integer or non-integer. This contrasted with previous finger tapping research where the integer ratios generally led to less error than the non-integer ratios. We suggest that this is due to the different movement topologies that are required of each paradigm. Overall, we found that this visuomotor task was useful for testing the interaction of multiple coordination constraints as well as the release from these constraints with practice in the presence of augmented visual feedback.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157395PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023619PLOS

Publication Analysis

Top Keywords

coordination constraints
24
multiple coordination
12
left hand
12
visuomotor task
8
constraints coordination
8
constraints tested
8
interaction multiple
8
augmented visual
8
visual feedback
8
3∶1 2∶1
8

Similar Publications

Background: New vaccines for pregnant women have recently been introduced in some high-income countries to protect infants in early life. Implementing maternal immunisation (MI) successfully in low- and middle-income countries will require planning and adaptations to immunisation and maternal health programs. To inform cost of MI delivery studies, we gathered perspectives from key stakeholders in five countries (Bangladesh, Ghana, Kenya, Mozambique, and Nepal) regarding health system requirements, opportunities, and challenges to introducing new maternal vaccines into routine health programs.

View Article and Find Full Text PDF

The fire station location has essential theoretical and practical values, not only in terms of maintaining the safety of life and property, but also enriching the optimization theory of site selection problems. To study the multi-objective siting problem of fire stations, we firstly divided demand areas and fire stations into three levels to form a comprehensive hierarchical emergency coverage network covering fire risk areas. Secondly, the nodes of the original location of the fire station were added to the set of nodes of the planned construction of the fire station.

View Article and Find Full Text PDF

Generating molecules that bind to specific proteins is an important but challenging task in drug discovery. Most previous works typically generate atoms autoregressively, with element types and 3D coordinates of atoms generated one by one. However, in real-world molecular systems, interactions among atoms are global, spanning the entire molecule, leading to pair-coupled energy function among atoms.

View Article and Find Full Text PDF

Recent technological advancements have enabled the experimental determination of amino acid sequences for numerous proteins. However, analyzing protein functions, which is essential for understanding their roles within cells, remains a challenging task due to the associated costs and time constraints. To address this challenge, various computational approaches have been proposed to aid in the categorization of protein functions, mainly utilizing amino acid sequences.

View Article and Find Full Text PDF

Background: The prefrontal cortex (PFC) is an important node for action planning in the frontoparietal reaching network but its role in reaching in children with cerebral palsy (CP) is unexplored. This case-control study combines a robotic task with functional near-infrared spectroscopy (fNIRS) to concurrently assess reaching accuracy and PFC activity during time-constrained, goal-directed reaching in children with CP. We hypothesized that reaching accuracy in children with CP would be lower than in typically developing children and would be related to PFC activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!