Background And Aim: Calcium has been proposed as a mediator of the chemoprevention of colorectal cancer (CRC), but the comprehensive mechanism underlying this preventive effect is not yet clear. Hence, we conducted this study to evaluate the possible roles and mechanisms of calcium-mediated prevention of CRC induced by 1,2-dimethylhydrazine (DMH) in mice.
Methods: For gene expression analysis, 6 non-tumor colorectal tissues of mice from the DMH + Calcium group and 3 samples each from the DMH and control groups were hybridized on a 4×44 K Agilent whole genome oligo microarray, and selected genes were validated by real-time polymerase chain reaction (PCR). Functional analysis of the microarray data was performed using KEGG and Gene Ontology (GO) analyses. Hub genes were identified using Pathway Studio software.
Results: The tumor incidence rates in the DMH and DMH + Calcium groups were 90% and 40%, respectively. Microarray gene expression analysis showed that S100a9, Defa20, Mmp10, Mmp7, Ptgs2, and Ang2 were among the most downregulated genes, whereas Per3, Tef, Rnf152, and Prdx6 were significantly upregulated in the DMH + Calcium group compared with the DMH group. Functional analysis showed that the Wnt, cell cycle, and arachidonic acid pathways were significantly downregulated in the DMH + Calcium group, and that the GO terms related to cell differentiation, cell cycle, proliferation, cell death, adhesion, and cell migration were significantly affected. Forkhead box M1 (FoxM1) and nuclear factor kappa-B (NF-κB) were considered as potent hub genes.
Conclusion: In the DMH-induced CRC mouse model, comprehensive mechanisms were involved with complex gene expression alterations encompassing many altered pathways and GO terms. However, how calcium regulates these events remains to be studied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157344 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022566 | PLOS |
Theranostics
January 2025
Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.
View Article and Find Full Text PDFArab J Gastroenterol
November 2024
Department of Pharmacology, Y. B. Chavan College of Pharmacy, Ch.Sambhajinagar, Maharashtra, India. Electronic address:
Science
July 2024
Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are effective antiobesity drugs. However, the precise central mechanisms of GLP-1RAs remain elusive. We administered GLP-1RAs to patients with obesity and observed a heightened sense of preingestive satiation.
View Article and Find Full Text PDFSci Adv
August 2023
Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
Salient cues, such as the rising sun or availability of food, entrain biological clocks for behavioral adaptation. The mechanisms underlying entrainment to food availability remain elusive. Using single-nucleus RNA sequencing during scheduled feeding, we identified a dorsomedial hypothalamus leptin receptor-expressing (DMH) neuron population that up-regulates circadian entrainment genes and exhibits calcium activity before an anticipated meal.
View Article and Find Full Text PDFbioRxiv
February 2023
Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!