Two human-specific neisserial pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, require the expression of type IV pili (tfp) for initial attachment to the host during infection. However, the mechanisms controlling the assembly and functionality of tfp are poorly understood. It is known that the gonococcal pilE gene, encoding the major subunit, is positively regulated by IHF, a multifunctional DNA binding protein. A neisserial specific repetitive DNA sequence, termed the Correia repeat-enclosed element (CREE) is situated upstream of three pil loci: pilHIJKX (pilH-X), pilGD, and pilF. CREEs have been shown to contain strong promoters, and some CREE variants contain a functional IHF binding site. CREEs might therefore be involved in the regulation of tfp biogenesis in pathogenic Neisseria. Site-directed and deletion mutagenesis on promoter::cat reporter constructs demonstrated that transcription of pilH-X and pilGD is from a σ(70) promoter and is independent of the CREE. The insertion of a CREE in the pilF promoter region in N. meningitidis generated a functional σ(70) promoter. However, there is also a functional promoter at this position in N. gonorrhoeae, where there is no CREE. These results suggest CREE insertion in these three pil loci does not influence transcription and that IHF does not coordinately regulate tfp biogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3187199 | PMC |
http://dx.doi.org/10.1128/JB.05526-11 | DOI Listing |
Microbiology (Reading)
January 2017
School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK.
is capable of causing gonorrhoea and more complex diseases in the human host. Within the gonococcal genome are over 100 copies of the insertion sequence-like Correia repeat enclosed element (CREE), which has been predicted to be mobile within the neisserial genomes. Although there is evidence of ancestral movement of these elements, no previous study has provided evidence for current mobilization.
View Article and Find Full Text PDFMicroorganisms
August 2016
School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.
Neisseria gonorrhoeae is capable of causing gonorrhoea and more complex diseases in the human host. Neisseria meningitidis is a closely related pathogen that shares many of the same genomic features and virulence factors, but causes the life threatening diseases meningococcal meningitis and septicaemia. The importance of non-coding RNAs in gene regulation has become increasingly evident having been demonstrated to be involved in regulons responsible for iron acquisition, antigenic variation, and virulence.
View Article and Find Full Text PDFJ Bacteriol
October 2011
Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
Two human-specific neisserial pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, require the expression of type IV pili (tfp) for initial attachment to the host during infection. However, the mechanisms controlling the assembly and functionality of tfp are poorly understood. It is known that the gonococcal pilE gene, encoding the major subunit, is positively regulated by IHF, a multifunctional DNA binding protein.
View Article and Find Full Text PDFBMC Genomics
February 2009
Systems Biology, University of Birmingham, Edgbaston, Birmingham, UK.
Background: The Correia Repeat Enclosed Element (CREE) of the Neisseria spp., with its inverted repeat and conserved core structure, can generate a promoter sequence at either or both ends, can bind IHF, and can bind RNase III and either be cleaved by it or protected by it. As such, the presence of this element can directly control the expression of adjacent genes.
View Article and Find Full Text PDFInfect Immun
May 2006
Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
Alpha-2,3-sialyltransferase (Lst) is expressed on the outer membrane of Neisseria gonorrhoeae and Neisseria meningitidis and sialylates surface lipooligosaccharide (LOS), facilitating resistance to complement-mediated killing. The enzyme is constitutively expressed from a single gene (lst) and does not undergo antigenic or phase variation. We observed that Triton X-100 extracts of N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!