Pancreatic cancer is associated with a pronounced fibrotic reaction that was recently shown to limit delivery of chemotherapy. To identify potential therapeutic targets to overcome this fibrosis, we examined the interplay between fibrosis and the key proteinase membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14), which is required for growth and invasion in the collagen-rich microenvironment. In this article, we show that compared with control mice (Kras(+)/MT1-MMP(-)) that express an activating Kras(G12D) mutation necessary for pancreatic cancer development, littermate mice that express both MT1-MMP and Kras(G12D) (Kras(+)/MT1-MMP(+)) developed a greater number of large, dysplastic mucin-containing papillary lesions. These lesions were associated with a significant amount of surrounding fibrosis, increased α-smooth muscle actin (+) cells in the stroma, indicative of activated myofibroblasts, and increased Smad2 phosphorylation. To further understand how MT1-MMP promotes fibrosis, we established an in vitro model to examine the effect of expressing MT1-MMP in pancreatic ductal adenocarcinoma (PDAC) cells on stellate cell collagen deposition. Conditioned media from MT1-MMP-expressing PDAC cells grown in three-dimensional collagen enhanced Smad2 nuclear translocation, promoted Smad2 phosphorylation, and increased collagen production by stellate cells. Inhibiting the activity or expression of the TGF-β type I receptor in stellate cells attenuated MT1-MMP conditioned medium-induced collagen expression by stellate cells. In addition, a function-blocking anti-TGF-β antibody also inhibited MT1-MMP conditioned medium-induced collagen expression in stellate cells. Overall, we show that the bona fide collagenase MT1-MMP paradoxically contributes to fibrosis by increasing TGF-β signaling and that targeting MT1-MMP may thus help to mitigate fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196812PMC
http://dx.doi.org/10.1158/1541-7786.MCR-11-0023DOI Listing

Publication Analysis

Top Keywords

stellate cells
16
mt1-mmp
9
fibrosis increased
8
tgf-β signaling
8
pancreatic cancer
8
smad2 phosphorylation
8
pdac cells
8
mt1-mmp conditioned
8
conditioned medium-induced
8
medium-induced collagen
8

Similar Publications

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of - extracts.

Mol Omics

January 2025

Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.

Metabolic associated steatohepatitis characterized by lipid accumulation, inflammation and fibrosis, is a growing global health issue, contributing to severe liver-related mortality. With limited effective treatments available, there is an urgent need for novel therapeutic strategies. , rich in antioxidants, offers potential for combating steatohepatitis, but its cytotoxicity presents challenges.

View Article and Find Full Text PDF

Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.

View Article and Find Full Text PDF

m6A modified ATG9A is required in regulating autophagy to promote HSCs activation and liver fibrosis.

Cell Signal

January 2025

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Hepatic stellate cells (HSCs) are the central link of the occurrence and development of hepatic fibrosis, and autophagy promotes HSCs activation. N6-methyladenosine (m6A) RNA modification can also control autophagy by targeting selected autophagy-associated genes. but up to now, little research has been done on the m6A modification autophagy-related genes (ATGs) in hepatic fibrosis.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) has become a significant global health threat, yet its precise causes and mechanisms remain unclear. This study aims to identify gene expression patterns specific to T2D pancreatic islet cells and to explore the potential role of pancreatic stellate cells (PSCs) in T2D progression through regulatory networks involving lncRNA-mRNA interactions.

Methods: In this study, we screened for upregulated genes in T2D pancreatic islet samples using bulk sequencing (bulkseq) datasets and mapped these gene expression profiles onto three T2D single-cell RNA sequencing (scRNAseq) datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!