Rising temperature and tropospheric ozone (O(3)) concentrations are likely to affect carbon assimilation processes and thus the carbon sink strength of trees. In this study, we investigated the joint action of elevated ozone and temperature on silver birch (Betula pendula) and European aspen (Populus tremula) saplings in field conditions by combining free-air ozone exposure (1.2 × ambient) and infrared heaters (ambient +1.2 °C). At leaf level measurements, elevated ozone decreased leaf net photosynthesis (P(n)), while the response to elevated temperature was dependent on leaf position within the foliage. This indicates that leaf position has to be taken into account when leaf level data are collected and applied. The ozone effect on P(n) was partly compensated for at elevated temperature, showing an interactive effect of the treatments. In addition, the ratio of photosynthesis to stomatal conductance (P(n)/g(s) ratio) was decreased by ozone, which suggests decreasing water use efficiency. At the plant level, the increasing leaf area at elevated temperature resulted in a considerable increase in photosynthesis and growth in both species.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpr075DOI Listing

Publication Analysis

Top Keywords

elevated temperature
12
ozone temperature
8
carbon assimilation
8
betula pendula
8
populus tremula
8
elevated ozone
8
leaf level
8
leaf position
8
ozone
7
temperature
6

Similar Publications

Background: High-temperature environment can cause acute kidney injury affecting renal filtration function. To study the mechanism of renal injury caused by heat stress through activates TLR4/NF-κB/NLRP3 signaling pathway by disrupting the filtration barrier in broiler chickens. The temperature of broilers in the TN group was maintained at 23 ± 1 °C, and the HS group temperature was maintained at 35 ± 1℃ from the age of 21 days, and the high temperature was 10 h per day, and one broiler from each replicate group at the age of 35 and 42 days was selected for blood sampling, respectively.

View Article and Find Full Text PDF

Objectives: Delayed diagnosis of patients with Fever of Unknown Origin has long been a daunting clinical challenge. Onco-mNGS, which can accurately diagnose infectious agents and identify suspected tumor signatures by analyzing host chromosome copy number changes, has been widely used to assist identifying complex etiologies. However, the application of Onco-mNGS to improve FUO etiological screening has never been studied before.

View Article and Find Full Text PDF

Background: We aim to identify risk factors contributing to extended rehospitalizations in patients diagnosed with postpartum endometritis requiring intravenous antibiotics.

Methods: This retrospective cohort study examined postpartum endometritis patients readmitted for treatment from 2014 to 2022, comparing short (≤ 48 h) and prolonged hospitalization (> 48 h). Data included patient demographics, medical history, presentation parameters, vaginal examination findings, sonographic data, laboratory results, and details of the current labor to create a scoring system predicting prolonged hospitalization risk.

View Article and Find Full Text PDF

Systemic hydroa vacciniforme lymphoproliferative disorder in a patient with chronic active EBV infection.

BMJ Case Rep

December 2024

Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA

Hydroa vacciniforme lymphoproliferative disorders (HVLPD) fall within the clinical spectrum of chronic active epstein barr virus (EBV) disease (CAEBVD), ranging from localised and/or indolent forms (classic HVLPD) to systemic disease with fever, hepatosplenomegaly and lymphadenopathy (systemic HVLPD). A preadolescent male with 47XYY, multicystic dysplastic kidney, autism spectrum disorder and Attention-deficit/hyperactivity disorder (ADHD) presented with photodistributed non-pruritic, non-painful necrotic papulovesicles accompanied by non-febrile intermittent fatigue and lymphadenopathy. The patient had a history of EBV pneumonia in infancy confirmed by CT scan and was later diagnosed with CAEBV.

View Article and Find Full Text PDF

Vi capsular polysaccharide of Salmonella enterica serovar Typhi disturbs autophagy to increase intracellular survival in macrophages.

Microb Pathog

December 2024

Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, China. Electronic address:

The autophagy pathway plays a crucial role in resistance to bacterial infection in the host. Salmonella enterica serovar Typhi (S. Typhi), a human restricted pathogen, causes a systemic infection known as typhoid fever.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!