Ethnopharmacological Relevance: The root of Polygala tenuifolia Willd is a well-known traditional Oriental medicine and has been prescribed for treatment of dysfunction in memorial systems and various brain inflammatory diseases. The present study was designed to validate the anti-inflammatory effects of the water extract of Polygala tenuifolia root (WEPT).

Materials And Methods: The anti-inflammatory properties of WEPT were studied using lipopolysaccharide (LPS)-stimulated murine BV2 microglia model. As inflammatory parameters, the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E(2) (PGE(2)), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were evaluated. We also examined the extract's effect on the activity of nuclear factor-kappaB (NF-κB), and toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (Myd-88) expression.

Results: WEPT suppressed LPS-induced production of NO, PGE(2), and expression of iNOS and COX-2 in a dose-dependent manner, without causing cytotoxicity. It also significantly reduced generation of proinflammatory cytokines, including IL-1β and TNF-α. In addition, WEPT suppressed NF-κB translocation by blockade of IkappaB-α (IκB-α) degradation and inhibited TLR4 and Myd-88 expression in LPS-stimulated BV2 cells.

Conclusions: These results indicate that the inhibitory effects of WEPT on LPS-stimulated inflammatory mediator production in BV2 microglia are associated with suppression of the NF-κB and toll-like receptor signaling pathways. Therefore, Polygala tenuifolia extracts may be useful in treatment of neurodegenerative diseases by inhibition of inflammatory mediator production in activated microglia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2011.08.008DOI Listing

Publication Analysis

Top Keywords

polygala tenuifolia
16
anti-inflammatory effects
8
tenuifolia root
8
bv2 microglia
8
nf-κb toll-like
8
toll-like receptor
8
wept suppressed
8
inflammatory mediator
8
mediator production
8
polygala
4

Similar Publications

 (sect. , Polygalaceae), a new species from Guangxi, China.

PhytoKeys

January 2025

Nanning Botanical Garden; Nanning Qingxiushan Scenic and Historic Tourism Development Co., Ltd, Nanning, Guangxi, China Nanning Botanical Garden Nanning China.

Y. Nong & Run Hua Jiang (sect. Pseudosemeiocardium, Polygalaceae), a new species from a karst cave in west Guangxi, China, is described and illustrated.

View Article and Find Full Text PDF

Tenuigenin inhibits osteosarcoma growth via CIP2A/PP2A/NF-κB axis.

Cancer Chemother Pharmacol

December 2024

Department of Orthopedics & Soft Tissue, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.

Background: Polygala tenuifolia and its active components have been revealed to possess anti-tumor activities. However, the role of Tenuigenin (TEN), a bioactive ingredient from Polygala tenuifolia, in tumors such as osteosarcoma (OS) remains unclear. The present research intended to explore the efficacy and underlying mechanism of TEN on OS.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Alzheimer's disease (AD) is an incurable neurodegenerative disease that has become one of the most important diseases threatening global public health security. Dihuang Yinzi (DHYZ) is a traditional Chinese medicine that has been widely used for the treatment of AD and has significant therapeutic effects, but its specific mechanism of action is still unclear.The aim of the study is to investigate the specific mechanism of DHYZ in treating AD based on brain metabolomics and network pharmacology.

View Article and Find Full Text PDF

Mechanisms of polygalasaponin F against brain ischemia-reperfusion injury by targeting NKCC1.

Exp Neurol

November 2024

Department of Physiology, Baotou Medical College, Baotou, Inner Mongolia 014040, China; Institute of Neuroscience, Baotou Medical College, Baotou, Inner Mongolia 014040, China. Electronic address:

Article Synopsis
  • Stroke poses a significant health risk, with current treatments lacking effectiveness; elevated NKCC1 expression after a stroke disrupts the blood-brain barrier, contributing to brain swelling.
  • Polygalasaponin F (PGSF), a compound from Polygala japonica, has shown potential neuroprotective effects and could be a therapeutic option for reducing damage after cerebral ischemia-reperfusion injury (CIRI).
  • In experiments, PGSF significantly improved neurological outcomes and reduced NKCC1 expression by enhancing its promoter methylation while also decreasing blood-brain barrier leakage and increasing protective proteins, indicating its promising role in stroke recovery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!