Wild Iceland scallops Chlamys islandica from an Icelandic bay were examined for parasites. Queen scallops Aequipecten opercularis from the Faroe Islands and king scallops Pecten maximus and queen scallops from Scottish waters were also examined. Observations revealed heavy infections of eimeriorine parasites in 95-100% of C. islandica but not the other scallop species. All life stages in the apicomplexan reproduction phases, i.e. merogony, gametogony and sporogony, were present. Trophozoites and meronts were common within endothelial cells of the heart's auricle and two generations of free merozoites were frequently seen in great numbers in the haemolymph. Gamonts at various developmental stages were also abundant, most frequently free in the haemolymph. Macrogamonts were much more numerous than microgamonts. Oocysts were exclusively in the haemolymph; live mature oocysts contained numerous (>500) densely packed pairs of sporozoites forming sporocysts. Analysis of the 18S ribosomal DNA revealed that the parasite from C. islandica is most similar (97.7% identity) to an unidentified apicomplexan isolated from the haemolymph of the giant clam, Tridacna crocea, from Japan. Phylogenetic analyses showed that the novel sequence consistently grouped with the Tridacna sequence which formed a robust sister clade to the rhytidocystid group. We propose the name Margolisiella islandica sp. nov., referring to both type host and type locality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2011.08.001 | DOI Listing |
Genome Biol Evol
February 2021
Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
The phylum Apicomplexa consists largely of obligate animal parasites that include the causative agents of human diseases such as malaria. Apicomplexans have also emerged as models to study the evolution of nonphotosynthetic plastids, as they contain a relict chloroplast known as the apicoplast. The apicoplast offers important clues into how apicomplexan parasites evolved from free-living ancestors and can provide insights into reductive organelle evolution.
View Article and Find Full Text PDFJ Invertebr Pathol
November 2011
Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavik, Iceland.
Wild Iceland scallops Chlamys islandica from an Icelandic bay were examined for parasites. Queen scallops Aequipecten opercularis from the Faroe Islands and king scallops Pecten maximus and queen scallops from Scottish waters were also examined. Observations revealed heavy infections of eimeriorine parasites in 95-100% of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!