The broad-spectrum benzoxaborole antifungal AN2690 blocks protein synthesis by inhibiting leucyl-tRNA synthetase (LeuRS) via a novel oxaborole tRNA trapping mechanism in the editing site. Herein, one set of resistance mutations is at Asp487 outside the LeuRS hydrolytic editing pocket, in a region of unknown function. It is located within a eukaryote/archaea specific insert I4, which forms part of a cap over a benzoxaborole-AMP that is bound in the LeuRS CP1 domain editing active site. Mutational and biochemical analysis at Asp487 identified a salt bridge between Asp487 and Arg316 in the hinge region of the I4 cap of yeast LeuRS that is critical for tRNA deacylation. We hypothesize that this electrostatic interaction stabilizes the cap during binding of the editing substrate for hydrolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225056PMC
http://dx.doi.org/10.1016/j.febslet.2011.08.010DOI Listing

Publication Analysis

Top Keywords

resistance mutations
8
leucyl-trna synthetase
8
editing
6
characterization benzoxaborole-based
4
benzoxaborole-based antifungal
4
antifungal resistance
4
mutations demonstrates
4
demonstrates editing
4
editing depends
4
depends electrostatic
4

Similar Publications

What Is Known About This Topic?: Global human cases of zoonotic influenza A(H5N6) have increased significantly in recent years, primarily due to widespread circulation of clade 2.3.4.

View Article and Find Full Text PDF

An approach to predict and inhibit Amyloid Beta dimerization pattern in Alzheimer's disease.

Toxicol Rep

June 2025

Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India.

Alzheimer's Disease (AD) is one of the leading neurodegenerative diseases that affect the human population. Several hypotheses are in the pipeline to establish the commencement of this disease; however, the amyloid hypothesis is one of the most widely accepted ones. Amyloid plaques are rich in Amyloid Beta (Aβ) proteins, which are found in the brains of Alzheimer's patients.

View Article and Find Full Text PDF

Investigating POU3F4 in cancer: Expression patterns, prognostic implications, and functional roles in tumor immunity.

Heliyon

January 2025

Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.

Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions.

View Article and Find Full Text PDF

Pretreatment HIV Drug Resistance to Integrase Strand Transfer Inhibitors Among Newly Diagnosed HIV Individuals - China, 2018-2023.

China CDC Wkly

January 2025

State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Introduction: The widespread adoption of integrase strand transfer inhibitors (INSTIs) has led to the emergence of INSTI-associated drug-resistance mutations. This cross-sectional study conducted a comprehensive national survey to investigate the prevalence of pretreatment drug resistance (PDR) to INSTIs among newly diagnosed human immunodeficiency virus (HIV) individuals in China.

Methods: The study enrolled 10,654 individuals from 31 provincial-level administrative divisions between 2018 and 2023.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is one of the leading contributors to global malignancies incidence and mortality worldwide. Advanced GC had a relatively poor prognosis. The emerging of targeted therapy improved the survival and prognosis of GC patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!