Highly porous fibers were prepared by water-bath electrospinning from pure poly(ɛ-caprolactone) (PCL), and its blends with methoxy poly(ethylene glycol) (MPEG). These fibers were further analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and gravimetric as well as contact angle measurement. SEM images showed that the fibers diameters as well as pores diameter on the fibers were affected by the weight ratio of MPEG/PCL. DSC and XRD not only revealed suppression of crystallinity of PCL but also indicated the presence of trace amount of MPEG in PCL water-bath collected fibers. The potential use of these hydrophilic porous electrospun fibrous mats as scaffolding materials was evaluated in vitro using mouse osteoblasts (MC3T3-E1) as reference cell lines. Cytotoxicity assessment of the fiber mats indicated that the porous electrospun mat containing trace amount of MPEG was nontoxic to the cell. Cell culture results showed that porous fibrous mats were good in promoting the cell attachment and proliferation. This novel electrospun matrix could be used as potential tissue scaffold material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2011.07.045DOI Listing

Publication Analysis

Top Keywords

highly porous
8
tissue scaffold
8
water-bath electrospinning
8
trace amount
8
amount mpeg
8
porous electrospun
8
fibrous mats
8
fibers
6
porous
5
fabrication highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!