A selective and sensitive chemosensor, based on the 2(4-hydroxy pent-3-en-2-ylideneamine) phenol (HPYAP) as chromophore, has been developed for colorimetric and visual detection of Ag(I) ions. HPYAP shows a considerable chromogenic behavior toward Ag(I) ions by changing the color of the solution from pale-yellow to very chromatic-yellow, which can be easily detected with the naked-eye. The chemosensor exhibited selective absorbance enhancement to Ag(I) ions in water samples over other metal ions at 438 nm, with a linear range of 0.4-500 μM (r(2)=0.999) and a limit of detection 0.07 μM of Ag(I) ions with UV-vis spectrophotometer detection. The relative standard deviation (RSD) for 100 μM Ag(I) ions was 2.05% (n=7). The proposed method was applied for the determination Ag(I) ions in water and waste water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2011.07.060 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China. Electronic address:
In this work, temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) and the guanylthiourea (GLA) were used to modify chitosan (CS) to prepare a novel PNIPAM/GLA/CS adsorbent for Ag(I) ions. Temperature variations near the lower critical solution temperature (LCST) facilitate the adjustment of functional group distribution within the composite material, thereby influencing its adsorption performance for silver ions. The characteristics of this composite material were confirmed using a variety of techniques, including scanning electron microscopy (SEM), variable-temperature ultraviolet-visible near-infrared spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India.
Cyclic alkyl(amino) carbene (cAAC)-supported phosphaalkenides (cAACP) have been employed as ligands for the isolation of two atomically precise mixed valence paramagnetic AgI/012Cl, and AgI/010, nano-clusters [(Me-cAACP)AgCl] (2), and [(Me-cAACP)Ag](NTf) (4). 2 and 4 have been structurally characterized by single-crystal X-ray diffraction revealing the presence of three Ag atoms, nine Ag ions (2); and two Ag atoms, eight Ag ions (4), respectively. The clustering inorganic unit AgCl in 2 has been found to be surrounded by six mono-anionic μ-cAACP moieties having 3-bar symmetry.
View Article and Find Full Text PDFDalton Trans
December 2024
Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
A luminescent silver(I) complex containing a luminescent radical ligand was prepared for the first time. Coordination to Ag enhanced and red-shifted the radical-centered emission. This study demonstrates similar effects in the luminescence of the radical by complexation with group 11 d-metal ions.
View Article and Find Full Text PDFChemosphere
December 2024
Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Hokkaido, Japan.
At the Fukushima Daiichi Nuclear Power Station (FDNPS), continuous water circulation cools fuel debris, leading to the presence of radionuclides such as Sr-30, Cs-137, and I-129 in the cooling water. These radionuclides are adsorbed and co-precipitated by various materials. Among them, I-129 is a key radionuclide for safety assessment during the final disposal of adsorbent and co-precipitation materials, owing to its long half-life and poor sorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!