Few studies have characterized how pressure in the anterior chamber (AC) of the eye is transmitted via the vitreous to the vitreous-ganglion cell interface. We are aware of only one study that simultaneously measured the pressures in the AC and vitreous humor; and of only one study that simultaneously measured the pressures in the AC and the suprachoroidal space (SCS). The pressure in the AC is defined as the intraocular pressure (IOP), which when elevated beyond statistically normal limits is a recognized risk factor for glaucoma, a malady best described as an optic neuropathy with degeneration and eventual death of the retinal ganglion cells (GC's) and highly characteristic changes in the optic nerve head (ONH). Most investigators currently believe that the prevalent risk factor for GC apoptosis is ocular hypertension, but no one has demonstrated how an increase in IOP in the AC is transmitted to the GC's. In patients with primary open angle glaucoma, the pressure in the AC increases due to an increase in the resistance of the trabecular meshwork (TM) outflow pathway. We questioned how such increased pressure in the AC would be transmitted to the GC to produce the changes in the ONH seen in glaucoma. Based on our preliminary data and purview of the literature, we hypothesize that a pressure increase originating in the AC is likely transmitted via both the SCS and the vitreous, with transmission via the former pathway probably most efficient in affecting the GC. Independently of the mechanism that produces GC apoptosis, the ones that are first affected, as repeatedly shown by visual field tests, are the most peripheral ones; i.e., those whose axons are the most external as they form the ONH and enter the lamina cribrosa. There are no published reports explaining this peculiarity. The dogma is that the pressure transmitted via the vitreous is higher at the periphery because it is transmitted across a shorter distance, since the vitreous acts as a buffer that absorbs part of the pressure being transmitted. We propose that IOP is not only transmitted via the vitreous but also via the SCS. Increases in IOP could be efficiently applied via the SCS to the most external axons of the ONH as they leave the eye. Our hypothesis can also explain low-tension glaucoma in which the most peripheral GC's are also affected first, because pressure is transmitted without decay due to a reduced uveoscleral (UVS) flow.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713462 | PMC |
http://dx.doi.org/10.1016/j.mehy.2011.07.047 | DOI Listing |
Nat Commun
January 2025
School of Future Technology, University of Chinese Academy of Sciences, 100190, Beijing, PR China.
In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Engineering, University of Padova, 35122 Padova, Italy.
Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallés, 08290, Barcelona, Spain.
Magnesium and calcium carbonate minerals are significant reservoirs of Earth's carbon and understanding their behavior under different conditions is crucial for elucidating the mechanisms of deep carbon storage. Huntite, MgCa(CO), is one of the two stable calcium magnesium carbonate phases, together with dolomite. The distinctive cation coordination environment of Ca atoms compared to calcite-type and dolomite structures makes huntite a comparatively less dense phase.
View Article and Find Full Text PDFTrop Med Infect Dis
January 2025
School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK.
Antimicrobial resistance (AMR) in species, particularly and , poses a significant public health threat. These bacteria, which are commonly found in livestock, poultry, companion animals, and wildlife, are the leading causes of foodborne illnesses, often transmitted through contaminated poultry. Extensive exposure to antibiotics in human and veterinary medicine creates selection pressure, driving resistance through mechanisms such as point mutations, horizontal gene transfer, and efflux pumps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!