Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The separation range of superficially porous particles (Fused-Core®) has been extended by design of particles with 160 Å pores. These particles show superior kinetics (lower resistance to mass transfer), allowing fast separations of peptides and small proteins (molecular weights of <15,000). The high efficiency and relatively low back pressure of these 2.7 μm Fused-Core particles has been maintained so that separations can be performed with conventional HPLC instruments. Longer columns can be used for higher resolution of complex mixtures of peptides, such as proteolytic digests. Highly reproducible separations of peptides at elevated temperatures with low pH mobile phases are maintained as a result of a stable bonded stationary phase. The utility of such highly stable materials is exemplified by separations of problematic amyloid peptides at low pH (TFA mobile phase) at an operational temperature of 100 °C. To address the issue of poor peptide peak shape in formic acid-containing mobile phases we show that the addition of 10-20 mM ammonium formate improves peak shape, retention and load tolerance of peptides. Use of the Fused-Core particle materials for separations of synthetic peptides and tryptic digests yields peak capacities that are comparable to those obtained using columns packed with sub-2-μm particles, but with less than one-half of the operating back pressure. A peak capacity of 530 was obtained in 150 min on coupled columns of HALO Peptide ES-C18 with a combined length of 250 mm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288654 | PMC |
http://dx.doi.org/10.1016/j.chroma.2011.07.082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!