A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The production of intrinsically labeled milk and meat protein is feasible and provides functional tools for human nutrition research. | LitMetric

Administration of labeled, free amino acids does not allow direct assessment of in vivo dietary protein digestion and absorption kinetics. Consequently, dietary protein sources with labeled amino acids incorporated within their protein matrix are required. The aim of the present study was to produce intrinsically L-[1-(13)C]phenylalanine-labeled milk and meat protein that would permit in vivo assessment of postprandial protein digestion and absorption kinetics in humans. One lactating dairy cow was continuously infused with 420 μmol of L-[1-(13)C]phenylalanine/min for 96 h, with plasma and milk being collected before, during, and after isotope infusion. Twenty-four hours after infusion, the cow was slaughtered to produce intrinsically labeled meat. Levels of L-[1-(13)C]phenylalanine enrichment as high as 40 mole percent excess (MPE) in milk and 1.5 MPE in meat protein were achieved. In a subsequent human proof-of-principle experiment, 2 healthy young males (25±1 yr; 66.2±5.2 kg) each ingested 135 g of L-[1-(13)C]phenylalanine intrinsically labeled minced beef, after which plasma samples were collected at regular time intervals. Plasma L-[1-(13)C]phenylalanine enrichments increased during the first 90 min following beef ingestion, reaching peak plasma enrichment levels of 0.61±0.04 MPE. Whole-body net protein balance, assessed by continuous infusion of L-[ring-(2)H(5)]phenylalanine and L-[ring-(2)H(2)]tyrosine, was higher in the postprandial period compared with basal values (6.4±0.1 vs. -4.5±0.1 μmol/kg per h). In conclusion, the production of intrinsically L-[1-(13)C]phenylalanine-labeled milk and meat protein is feasible and provides functional tools to investigate in vivo protein digestion and absorption kinetics in humans.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2011-4451DOI Listing

Publication Analysis

Top Keywords

meat protein
16
intrinsically labeled
12
milk meat
12
protein digestion
12
digestion absorption
12
absorption kinetics
12
protein
10
production intrinsically
8
protein feasible
8
feasible functional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!