The expression and function of organic anion transporting polypeptides in normal tissues and in cancer.

Annu Rev Pharmacol Toxicol

Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.

Published: May 2012

Organic anion transporting polypeptides (OATPs) are members of the SLCO gene superfamily of proteins. The 11 human OATPs are classified into 6 families and subfamilies on the basis of their amino acid sequence similarities. OATPs are expressed in several epithelial tissues throughout the body and transport mainly amphipathic molecules with molecular weights of more than 300 kDa. Members of the OATP1 and OATP2 families are functionally the best-characterized OATPs. Among these are the multispecific OATP1A2, OATP1B1, OATP1B3, and OATP2B1. They transport various endo- and xenobiotics, including hormones and their conjugates as well as numerous drugs such as several anticancer agents. Recent reports demonstrate that some OATPs are up- or downregulated in several cancers and that OATP expression might affect cancer development. On the basis of the findings summarized in this review, we propose that OATPs could be valuable targets for anticancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257355PMC
http://dx.doi.org/10.1146/annurev-pharmtox-010510-100556DOI Listing

Publication Analysis

Top Keywords

organic anion
8
anion transporting
8
transporting polypeptides
8
oatps
6
expression function
4
function organic
4
polypeptides normal
4
normal tissues
4
tissues cancer
4
cancer organic
4

Similar Publications

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.

View Article and Find Full Text PDF

Rapid and Green Anion-Assisted Mechanochemical Peptide Cyclization.

ACS Sustain Chem Eng

January 2025

Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.

A novel mechanochemical approach is described for chloride-templated head-to-tail macrocyclization of a pentapeptide and a hexapeptide. This straightforward method allows the solvent-free preparation of cyclopeptides with yields comparable to solution-based approaches without the need for high dilution of the reaction mixture and with significantly reduced reaction times and organic waste amount.

View Article and Find Full Text PDF

The group 1 alumanyls, [{SiN}AlM] (M = K, Rb, Cs; SiN = {CHSiMeNDipp}), display a variable kinetic facility (K < Rb < Cs) toward oxidative addition of the acidic C-H bond of terminal alkynes to provide the corresponding alkali metal hydrido(alkynyl)aluminate derivatives. Theoretical analysis of the formation of these compounds through density functional theory (DFT) calculations implies that the experimentally observed changes in reaction rate are a consequence of the variable stability of the [{SiN}AlM] dimers, the integrity of which reflects the ability of M to maintain the polyhapto group 1-arene interactions necessary for dimer propagation. These observations highlight that such "on-dimer" reactivity takes place sequentially and also that the ability of each constituent Al(I) center to effect the activation of the organic substrate is kinetically differentiated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!