Kinetic models of ribonucleic acid fermentation and continuous culture by Candida tropicalis no.121.

Bioprocess Biosyst Eng

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, People's Republic of China.

Published: March 2012

During ribonucleic acid fermentation, the fermentative processes were researched at pH controlled at 4.0 and under natural conditions. Unstructured models in a 50-L airlift fermentor were established for batch RNA production at pH 4.0 using the Verhulst equation for microbial growth, the Luedeking-Piret equation for product formation and a Luedeking-Piret-like equation for substrate uptake. Parameters of the kinetic models were determined using origin 7.5. Based on the models estimated above, another batch fermentation experiment was conducted in a 300-L airlift fermentor, which demonstrated that the models could be useful for RNA production on an industrial scale. Additionally, continuous fermentation based on kinetic models was proposed to make full use of substrates and reduce the cost of waste water treatment. As a result, although the DCW and RNA concentration were 11.5 and 1.68 g L(-1), which were lower than that of batch fermentation, the sugar utilization increased by 14.3%, while the waste water decreased by more than 90%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-011-0580-5DOI Listing

Publication Analysis

Top Keywords

kinetic models
12
ribonucleic acid
8
acid fermentation
8
airlift fermentor
8
rna production
8
batch fermentation
8
waste water
8
fermentation
5
models
5
models ribonucleic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!