Crop demand of manganese.

Environ Geochem Health

Agrochemistry Division, Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, PO Box 35, 1525 Budapest, Hungary.

Published: January 2012

AI Article Synopsis

Article Abstract

The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn(2+) levels and to determine the critical tissue concentration of Mn(2+) deficiency during early stages of growth. The minimum Mn(2+) concentration required in soil nutrient contents was 42.5 mg kg(-1) for sunflower, 24.3 mg kg(-1) for tobacco and 10.2 mg kg(-1) for triticale. Sunflower, tobacco and triticale achieved optimum growth at 48.0-65.0 mg Mn(2+) kg(-1), 24.9-32.1 mg Mn( n+) kg(-1) and 28.7 to 29.6 mg Mn(2+) kg(-1), respectively. Critical shoot Mn(2+) concentration at early stages of growth was 53.6 mg kg(-1) in sunflower, 458.0 mg kg(-1) in tobacco and 193.8 mg kg(-1) in triticale. Our results demonstrate that the tolerance to low external Mn(2+) (triticale: <30.2 mg kg(-1); sunflower: <56.2 mg kg(-1); tobacco: <69.3 mg kg(-1)) and the critical tissue Mn(2+) levels for deficiency varied significantly between crop species tested.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-011-9405-3DOI Listing

Publication Analysis

Top Keywords

kg-1
9
tolerance low
8
low external
8
external mn2+
8
early stages
8
stages growth
8
mn2+ concentration
8
kg-1 sunflower
8
kg-1 tobacco
8
kg-1 triticale
8

Similar Publications

In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.

View Article and Find Full Text PDF

Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.

View Article and Find Full Text PDF

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

Application of Biochar-Immobilized for Enhancing Phosphorus Uptake and Growth in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!