Purpose: Multifocal intraocular lenses (MIOL) are known to induce various photic phenomena depending on the optical principle. The aim of this study was to investigate the correlation between stray light measurements performed with the C-Quant (Oculus, Germany) and the results of a subjective patient questionnaire.

Patients And Methods: In this study three different MIOLs were compared: AMO ReZoom (refractive design, n=10), AMO ZM900 (diffractive design, n=10) and Oculentis Mplus (near segment design, n=10). Cataract and refractive patients were enrolled in the study. Functional results were evaluated at least 3 months postoperatively followed by stray light measurements and a subjective questionnaire.

Results: Surgery was performed for all patients without complications. The three groups were matched for age, IOL power and corrected distance visual acuity (CDVA). Significantly different stray light (median) values log(s) were found (Kruskal-Wallis test, p<0.05): 1.12 log (refractive), 1.13 log (segment) and 1.28 log (diffractive). The subjective questionnaire did not show differences in glare perception but refractive MIOL patients noticed more halos surrounding light sources than the diffractive and segment MIOL patients.

Conclusions: Stray light and subjective photopic phenomena do not show any basic correlation. Measurements in patients with refractive MIOLs showed less stray light than near segment or diffractive MIOLs. However, refractive MIOLs induced more halos compared to the other groups analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00347-011-2411-0DOI Listing

Publication Analysis

Top Keywords

stray light
16
design n=10
12
multifocal intraocular
8
light measurements
8
[influence multifocal
4
intraocular lens
4
lens concepts
4
concepts retinal
4
stray
4
retinal stray
4

Similar Publications

Phototoxic reaction to oral terbinafine due to Tinea capitis in a child.

Acta Dermatovenerol Croat

November 2024

Prof. Ana Bakija-Konsuo, MD, PhD, Clinic for Dermatovenerology CUTIS, Vukovarska 22, Dubrovnik, Croatia;

We report the case of an 18-month-old boy who developed a phototoxic skin reaction to terbinafine on his scalp, ears, and face in the form of disseminated erythematous plaques, which resembled subacute lupus erythematosus (SCLE) in their clinical presentation. Skin changes appeared a short time after the boy was exposed to sunlight during the period of time when he was treated with oral terbinafine due to Microsporum canis fungal scalp infection. Tinea capitis is a common dermatophyte infection primarily affecting prepubertal children (1).

View Article and Find Full Text PDF

We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.

View Article and Find Full Text PDF

The 'pyro-phototronic effect' plays a nontrivial role in advancing ferroelectric (FE) devices of light detectors, light-emitting diodes, and other smart technologies. In this work, a premier FE copolymer, poly(vinylidene fluoride--trifluoro ethylene) (P(VDF-TrFE)), is reinforced with a lead-free double perovskite, CsSnI, to render profound properties in a hybrid nanostructure. It presents a unique example of the coupling of ferro-, pyro- and piezo-electrics to the 'photoexcitation' of exotic charges that actively empower the synergetic features.

View Article and Find Full Text PDF

Aiming at the problem of overbrightness of the target simulator background for LED backlight panel illumination, a 5° aperture angle-matched collimated illumination method for the target simulator is proposed based on the study of the dark-state leakage of the LCD display device and the scattered stray light of the system. After simulation analysis the method can make the display contrast increase by 3.1 times and solve the problem of dark targets being drowned by the background bright light, which exists in the LED illumination target simulator.

View Article and Find Full Text PDF

High-Performance Telescope System Design for Space-Based Gravitational Waves Detection.

Sensors (Basel)

November 2024

MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Space-based gravitational wave (GW) detection utilizes the Michelson interferometry principle to create long baseline laser interferometers capable of sensing signals within a frequency range of 10-1 Hz.
  • The paper introduces an advanced design using an off-axis four-mirror configuration that minimizes wavefront aberration and enhances stray light suppression, addressing background noise issues.
  • This improved design achieves a wavefront error of less than λ/500 in the main field of view and can reach an error of less than λ/30 with a 92% probability, making it a strong candidate for future GW detection projects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!