Theory of electric resonance in the neocortical apical dendrite.

PLoS One

Stanley Laboratory of Electrical Physics, Great Barrington, Massachusetts, United States of America.

Published: December 2011

Pyramidal neurons of the neocortex display a wide range of synchronous EEG rhythms, which arise from electric activity along the apical dendrites of neocortical pyramidal neurons. Here we present a theoretical description of oscillation frequency profiles along apical dendrites which exhibit resonance frequencies in the range of 10 to 100 Hz. The apical dendrite is modeled as a leaky coaxial cable coated with a dielectric, in which a series of compartments act as coupled electric circuits that gradually narrow the resonance profile. The tuning of the peak frequency is assumed to be controlled by the average amplitude of voltage-gated outward currents, which in turn are regulated by the subthreshold noise in the thousands of synaptic spines that are continuously bombarded by local circuits. The results of simulations confirmed the ability of the model both to tune the peak frequency in the 10-100 Hz range and to gradually narrow the resonance profile. Considerable additional narrowing of the resonance profile is provided by repeated looping through the apical dendrite via the corticothalamocortical circuit, which reduced the width of each resonance curve (at half-maximum) to approximately 1 Hz. Synaptic noise in the neural circuit is discussed in relation to the ways it can influence the narrowing process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154468PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023412PLOS

Publication Analysis

Top Keywords

apical dendrite
12
resonance profile
12
pyramidal neurons
8
apical dendrites
8
gradually narrow
8
narrow resonance
8
peak frequency
8
resonance
6
apical
5
theory electric
4

Similar Publications

Metabolic syndrome and its effect on immune cells in apical periodontitis- a narrative review.

Clin Oral Investig

January 2025

Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.

Objectives: Apical periodontitis (AP) is an inflammatory immune response in periapical tissues caused by microbial infections. Failure of root canal treatment or delayed healing is often due to intracanal or extra-radicular bacteria. However, beyond microbial factors, the patient's systemic health can significantly influence the progression and healing of AP.

View Article and Find Full Text PDF

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

Follicular dendritic cell-secreted protein (FDC-SP) is produced by follicular dendritic cells, periodontal ligament and junctional epithelium (JE). JE exists immediately apical to the bottom of the pocket and binds enamel with hemidesmosomes to protect the periodontium from bacterial infection. To analyze the transcriptional regulation of the FDC-SP gene by interleukin-6 (IL-6), we performed real-time PCR, Western blotting, immunofluorescence, luciferase (LUC) assays, gel mobility shift and chromatin immunoprecipitation (ChIP) assays using Ca9-22 and Sa3 gingival epithelial cells.

View Article and Find Full Text PDF

Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits.

View Article and Find Full Text PDF

The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!