A Ga(AsBi) quantum well (QW) with Bi content reaching 6% and well width of 11 nm embedded in GaAs is grown by molecular beam epitaxy at low temperature and studied by means of high-resolution x-ray diffraction, photoluminescence (PL), and time-resolved PL. It is shown that for this growth regime, the QW is coherently strained to the substrate with a low dislocation density. The low temperature PL demonstrates a comparatively narrow excitonic linewidth of ∼ 40 meV. For high excitation density distinct QW excited states evolve in the emission spectra. The origins of peculiar PL dependences on temperature and excitation density are interpreted in terms of intra-well optical transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/22/37/375703DOI Listing

Publication Analysis

Top Keywords

low temperature
12
quantum well
8
molecular beam
8
beam epitaxy
8
excitation density
8
optical evidence
4
evidence quantum
4
well channel
4
low
4
channel low
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!