Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

Bioinspir Biomim

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Published: September 2011

In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3182/6/3/036007DOI Listing

Publication Analysis

Top Keywords

leading edge
36
edge vorticity
28
aerodynamic forces
20
flapping wings
16
forces generated
12
edge
10
forces
9
modulation leading
8
forces flexible
8
flexible flapping
8

Similar Publications

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

Exploring the potential of machine learning models to predict nasal measurements through facial landmarks.

J Prosthet Dent

January 2025

Professor and Chairman, Department of Prosthodontics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:

Statement Of Problem: Information on predicting the measurements of the nose from selected facial landmarks to assist in maxillofacial prosthodontics is lacking.

Purpose: The objective of this study was to identify the efficiency of machine learning models in predicting the length and width of the nose from selected facial landmarks.

Material And Methods: Two-dimensional frontal and lateral photographs were made of 100 men and 100 women.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) offers high-resolution images of the eye's fundus. This enables thorough analysis of retinal health by doctors, providing a solid basis for diagnosis and treatment. With the development of deep learning, deep learning-based methods are becoming more popular for fundus OCT image segmentation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

USC, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD), the leading cause of dementia accounting for 70% of cases, involves complex pathogenesis with amyloid, tau, and cerebrovascular dysfunction contributing significantly. Vascular changes and impairment are strongly associated with AD pathogenesis in new knock-in models from the MODEL-AD consortium - early-onset AD (EOAD) and late-onset AD (LOAD) mice - which can be influenced by spatial transcriptomic genetic factors.

Method: We will thoroughly characterize vascular dysfunction in these models over time: 3, 6, 9 months for EOAD mice; 4, 8, 12 months for LOAD mice.

View Article and Find Full Text PDF

Semantic segmentation of high-resolution images from remote sensing is crucial across various sectors. However, due to limitations in computational resources and the complexity of network architectures, many sophisticated semantic segmentation models struggle with efficiency in real-world applications, leading to an interest in developing lightweight model like borders. These models often employ a dual-branch structure, which balances processing speed and performance effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!