A two-dimensional DNA lattice implanted polymer solar cell.

Nanotechnology

School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Korea.

Published: September 2011

A double crossover tile based artificial two-dimensional (2D) DNA lattice was fabricated and the dry-wet method was introduced to recover an original DNA lattice structure in order to deposit DNA lattices safely on the organic layer without damaging the layer. The DNA lattice was then employed as an electron blocking layer in a polymer solar cell causing an increase of about 10% up to 160% in the power conversion efficiency. Consequently, the resulting solar cell which had an artificial 2D DNA blocking layer showed a significant enhancement in power conversion efficiency compared to conventional polymer solar cells. It should be clear that the artificial DNA nanostructure holds unique physical properties that are extremely attractive for various energy-related and photonic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/22/37/375202DOI Listing

Publication Analysis

Top Keywords

dna lattice
16
polymer solar
12
solar cell
12
two-dimensional dna
8
blocking layer
8
power conversion
8
conversion efficiency
8
artificial dna
8
dna
6
lattice
4

Similar Publications

Elucidating the interaction between membrane proteins and antibodies requires whole-cell imaging at high spatiotemporal resolution. Lattice light-sheet (LLS) microscopy offers fast volumetric imaging but suffers from limited spatial resolution. DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) achieves molecular resolution but is restricted to two-dimensional imaging owing to long acquisition times.

View Article and Find Full Text PDF

Self-assembled DNA origami lattices on silicon oxide surfaces have great potential to serve as masks in molecular lithography. However, silicon oxide surfaces come in many different forms and the type and history of the silicon oxide has a large effect on its physicochemical surface properties. Therefore, we here investigate DNA origami lattice formation on differently fabricated SiO films on silicon wafers after wet-chemical oxidation by RCA1.

View Article and Find Full Text PDF

DNA Origami Colloidal Crystals: Opportunities and Challenges.

Nano Lett

January 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.

Over the last three decades, colloidal crystallization has provided an easy-to-craft platform for mesoscale engineering of photonic and phononic crystals. Nevertheless, the crystal lattices achieved thus far with commodity colloids are largely limited to symmetric and densely packed structures, restricting their functionalities. To obtain non-close-packed crystals and the resulting complexity of the available structures, directional binding between "patchy" colloids has been pursued.

View Article and Find Full Text PDF

Polymers in Physics, Chemistry and Biology: Behavior of Linear Polymers in Fractal Structures.

Polymers (Basel)

December 2024

Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy.

We start presenting an overview on recent applications of linear polymers and networks in condensed matter physics, chemistry and biology by briefly discussing selected papers (published within 2022-2024) in some detail. They are organized into three main subsections: polymers in physics (further subdivided into simulations of coarse-grained models and structural properties of materials), chemistry (quantum mechanical calculations, environmental issues and rheological properties of viscoelastic composites) and biology (macromolecules, proteins and biomedical applications). The core of the work is devoted to a review of theoretical aspects of linear polymers, with emphasis on self-avoiding walk (SAW) chains, in regular lattices and in both deterministic and random fractal structures.

View Article and Find Full Text PDF

Multicomponent self-assembly has been explored to create novel metamaterials from nanoparticles of different sizes and compositions, but the assembly of nanoparticles with complementary shapes remains rare. Recent binary assemblies were mediated by DNA base pairing or induced by solvent evaporation. Here, we introduce depletion-induced self-assembly (DISA) as a novel approach to constructing tunable binary lattices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!