Process simulations--mental simulations that ask people to imagine the process of completing a task--have been shown to decrease anxiety in students facing hypothetical or psychological threats in the short term. The aim of the present study was to see whether process simulations could reduce anxiety in a sample of the general population attending a dental practice, and whether these effects could be sustained throughout treatment. Participants (N=75) were randomized to an experimental condition where they were asked to simulate mentally the process of seeing the dentist, or to a control condition where they were asked to simulate mentally the outcome of seeing the dentist. Findings showed that participants in the experimental condition were significantly less anxious both before and after their consultations. Self-efficacy and self-esteem remained unchanged. This study suggests that process simulation is one active ingredient in anxiety treatment programs and further research is required to enhance its effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10615806.2011.604727 | DOI Listing |
Chem Soc Rev
January 2025
Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Parul Institute of Applied Sciences, Parul University, Vadodara, India.
Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States.
Hybrid quantum-classical computing algorithms offer significant potential for accelerating the calculation of the electronic structure of strongly correlated molecules. In this work, we present the first quantum simulation of conical intersections (CIs) in a biomolecule, cytosine, using a superconducting quantum computer. We apply the contracted quantum eigensolver (CQE)─with comparisons to conventional variational quantum deflation (VQD)─to compute the near-degenerate ground and excited states associated with the conical intersection, a key feature governing the photostability of DNA and RNA.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Physics Postgraduate Program, Institute of Physics, University of Brasília, 70910-900 Brasília-DF, Brazil.
Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!