Phosphazene polymers are classically synthesized by the high-temperature, ring-opening polymerization (ROP) of [PCl(2)N](3) to give [PCl(2)N](n), followed by functionalization of [PCl(2)N](n) with different side groups. We investigated the interactions of [PCl(2)N](3) with Lewis acids because Lewis acids have been used to induce the high-temperature ROP of [PCl(2)N](3). The reactions of [PCl(2)N](3) with MX(3) (M = group 13, X = halides), under strict anaerobic conditions gave adducts [PCl(2)N](3)·MX(3). Adducts were characterized by X-ray crystallography and multinuclear and variable-temperature NMR studies, and mechanistic understanding of their fluxional behavior in solution was achieved. The properties of the [PCl(2)N](3)·MX(3) adducts at or near room temperature strongly suggests that such adducts are not involved directly as intermediates in the high-temperature ROP of [PCl(2)N](3).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic201075zDOI Listing

Publication Analysis

Top Keywords

rop [pcl2n]3
12
lewis acids
8
high-temperature rop
8
[pcl2n]3·mx3 adducts
8
[pcl2n]3
6
adducts
5
group lewis
4
lewis acid
4
acid adducts
4
adducts [pcl2n]3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!