CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis.

Plant Cell Rep

Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education and Ministry of Agriculture, Anhui Agriculture University, Hefei, China.

Published: January 2012

C-repeat/dehydration-responsive element binding factors (CBFs) can induce the expression of a suite of cold-responsive genes to increase plant cold tolerance, and inducer of CBF expression 1 (ICE1) is a major activator for CBF. In the present study, we isolated the full-length cDNAs of ICE1 and CBF from Camellia sinensis, designated as CsICE1 and CsCBF1, respectively. The deduced protein CsICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE1-like proteins. CsCBF1 contains all conserved domains of CBFs in other plant species and can specifically bind to the C-repeat/dehydration-responsive element (CRT/DRE) as confirmed by electrophoretic mobility shift assay. The transcription of CsICE1 had no apparent alteration after chilling treatment (4°C). CsCBF1 expression was not detected in normal temperature (20°C) but was induced immediately and significantly by low temperature (4°C). Our results suggest that ICE1-CBF cold-response pathway is conserved in tea plants. CsICE1 and CsCBF1, two components of this pathway, play roles in cold responses in tea plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-011-1136-5DOI Listing

Publication Analysis

Top Keywords

csice1 cscbf1
12
cold responses
8
camellia sinensis
8
c-repeat/dehydration-responsive element
8
tea plants
8
csice1
5
cscbf1 transcription
4
transcription factors
4
factors involved
4
involved cold
4

Similar Publications

A CCA1-like MYB subfamily member CsMYB128 participates in chilling sensitivity and cold tolerance in tea plants (Camellia sinensis).

Int J Biol Macromol

January 2025

Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China. Electronic address:

While flavonoid accumulation, light radiation, and cold stress are intrinsically connected in tea plants, yet the underlying mechanisms remain elusive. The circadian protein CCA1 and CCA1-like MYB transcription factors (TFs) play important roles in coordinating light and temperature signals in plant-environment interactions, their homologs in tea plants have not been addressed. Here we analyzed CsCCA1-like MYB subfamily in tea genome and found one member, a circadian gene CsMYB128 responding to cold stress.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers discovered that a protein called LUX ARRHYTHMO (LUX) plays a crucial role in helping tea plants (Camellia sinensis) tolerate cold stress, which can hurt both the plant's quality and yield.
  • - The study showed that the expression of the CsLUX gene varies with the time of day and increases significantly when the plants experience cold temperatures, indicating its role in regulating freezing tolerance.
  • - A specific genetic variation (C-to-A) in the CsLUX gene was identified as beneficial for cold response, highlighting its potential use as a molecular marker in breeding programs aimed at enhancing cold resistance in tea plants.
View Article and Find Full Text PDF

Cold-acclimated and non-acclimated contrasting Camelina ( L.) biotypes were investigated for changes in stress-associated biomarkers, including antioxidant enzyme activity, lipid peroxidation, protein, and proline content. In addition, a well-known freezing tolerance pathway participant known as C-repeat/DRE-binding factors (CBFs), an inducer of CBF expression (ICE1), and a cold-regulated () genes of the ICE-CBF-COR pathway were studied at the transcriptional level on the doubled-haploid (DH) lines.

View Article and Find Full Text PDF

Cucumber (Cucumis sativus) originated in tropical areas and is very sensitive to low temperatures. Cold acclimation is a universal strategy that improves plant resistance to cold stress. In this study, we report that heat shock induces cold acclimation in cucumber seedlings, via a process involving the heat-shock transcription factor HSFA1d.

View Article and Find Full Text PDF

CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis.

Plant Cell Rep

January 2012

Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Education and Ministry of Agriculture, Anhui Agriculture University, Hefei, China.

C-repeat/dehydration-responsive element binding factors (CBFs) can induce the expression of a suite of cold-responsive genes to increase plant cold tolerance, and inducer of CBF expression 1 (ICE1) is a major activator for CBF. In the present study, we isolated the full-length cDNAs of ICE1 and CBF from Camellia sinensis, designated as CsICE1 and CsCBF1, respectively. The deduced protein CsICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE1-like proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!