Purpose: This study investigated the retinal adaptive mechanism in inner retinal dysfunction using the slow double-stimulation multifocal electroretinogram (mfERG) paradigm.

Methods: Slow double-stimulation mfERG responses were recorded from 15 eyes of 15 4-month-old Mongolian gerbils in control conditions and after suppression of inner retinal responses with injections of tetrodotoxin (TTX) and N-methyl-d-aspartic acid (NMDA). The stimulation consisted of five video frames: the two initial frames with multifocal flashes were triggered by two independent m-sequences, followed by three dark video frames. The results were compared with findings in humans: 7 subjects with glaucoma and 31 age-matched normal subjects were measured using the same mfERG protocol.

Results: The stimulation generates two responses (M(1) and M(2)) from the two independent multifocal frames. The M(1):M(2) ratio showed a significant reduction after administration of TTX+NMDA in the animal study. This matched with the human glaucoma findings. Glaucoma subjects generally have a reduced M(1):M(2) ratio; this ratio showed a sensitivity of 86%, with a specificity of 84% for differentiating normal eyes from glaucomatous eyes.

Conclusion: This stimulation paradigm provides a method of measuring temporal visual characteristics. The M(1):M(2) ratio acts as an indirect functional indicator of retinal adaptation, which may be abnormal in the diseased retina. Further development of this method may help to describe the functional variation in the diseased retina and to predict the occurrence of a range of retinopathies.

Download full-text PDF

Source
http://dx.doi.org/10.1136/bjophthalmol-2011-300263DOI Listing

Publication Analysis

Top Keywords

inner retinal
12
slow double-stimulation
12
m1m2 ratio
12
retinal dysfunction
8
dysfunction slow
8
double-stimulation multifocal
8
multifocal electroretinogram
8
video frames
8
diseased retina
8
multifocal
4

Similar Publications

Rod and cone photoreceptor cells are specialized neurons responsible for transforming the information reaching the eyes in the form of photons into the language of neuronal activity. Rods are the most prevalent photoreceptor type, primarily responsible for light detection under conditions of limited illumination. Here we demonstrate that human rods have a morphological organization unique among all described species, whereby the cell soma extends alongside the light-sensitive outer segment compartment to form a structure we have termed the "accessory inner segment.

View Article and Find Full Text PDF

Longitudinal assessment of retinal and visual pathway electrophysiology and structure after high altitude exposure.

Graefes Arch Clin Exp Ophthalmol

January 2025

Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.

High altitude (HA) exposure induces impairments in visual function. This study was designed to dynamically observe visual function after returning to lowland and elucidate the underlying mechanism by examining the structure and function of retina and visual pathway. Twenty-three subjects were recruited before (Test 1), and one week (Test 2) and three months (Test 3) after their return from HA (4300 m) where they resided for 30 days.

View Article and Find Full Text PDF

Purpose: To describe a rare complication in a patient with extensive macular atrophy with pseudodrusen-like appearance (EMAP), suggesting immune dysregulation in advanced stages of the disease.

Methods: Case Report. Multimodal imaging -including true-color fundus photography, blue autofluorescence, high-resolution optical coherence tomography (Hi-Res OCT), swept-source OCT angiography, and dye-based angiography- was used to evaluate retinal alterations.

View Article and Find Full Text PDF

Bacillary layer detachment: Updates on its clinical and prognostic significance in retinal disease.

Surv Ophthalmol

January 2025

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele-Milan, Italy; Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, via Mazzini 11, Bergamo, Italy.

Bacillary layer detachment (BALAD) refers to the distinctive splitting at the level of the photoreceptor inner segment myoid and accumulation of intraretinal fluid, as seen on optical coherence tomography (OCT).BALAD is an increasingly recognized OCT biomarker of numerous heterogeneous chorioretinal diseases, including posterior uveitis, age-related macular degeneration and macular neovascularization, neoplastic and paraneoplastic retinal disorders, rhegmatogenous retinal detachment, blunt ocular trauma, and miscellaneous conditions. The recognition of BALAD is clinically relevant because, based on the specific etiology, BALAD may require simple observation, ocular or systemic medical treatment, or even surgical intervention, with subsequent different prognosis.

View Article and Find Full Text PDF

Age- and Sex-Specific Regulation of Serine Racemase in the Retina of an Alzheimer's Disease Mouse.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.

Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!