Multi-objective optimization shapes ecological variation.

Proc Biol Sci

Hyytiälä Forestry Field Station, Department of Forest Sciences, University of Helsinki, Hyytiäläntie 124, 35500 Korkeakoski, Finland.

Published: February 2012

Ecological systems contain a huge amount of quantitative variation between and within species and locations, which makes it difficult to obtain unambiguous verification of theoretical predictions. Ordinary experiments consider just a few explanatory factors and are prone to providing oversimplified answers because they ignore the complexity of the factors that underlie variation. We used multi-objective optimization (MO) for a mechanistic analysis of the potential ecological and evolutionary causes and consequences of variation in the life-history traits of a species of moth. Optimal life-history solutions were sought for environmental conditions where different life stages of the moth were subject to predation and other known fitness-reducing factors in a manner that was dependent on the duration of these life stages and on variable mortality rates. We found that multi-objective optimal solutions to these conditions that the moths regularly experience explained most of the life-history variation within this species. Our results demonstrate that variation can have a causal interpretation even for organisms under steady conditions. The results suggest that weather and species interactions can act as underlying causes of variation, and MO acts as a corresponding adaptive mechanism that maintains variation in the traits of organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248741PMC
http://dx.doi.org/10.1098/rspb.2011.1371DOI Listing

Publication Analysis

Top Keywords

multi-objective optimization
8
variation
8
variation species
8
life stages
8
optimization shapes
4
shapes ecological
4
ecological variation
4
variation ecological
4
ecological systems
4
systems huge
4

Similar Publications

Frequency regulation in isolated microgrids is challenging due to system uncertainties and varying load demands. This study presents an optimal µ-synthesis robust control strategy that regulates microgrid frequency while enhancing system performance and stability-a proposed fixed-structure approach for selecting performance and robustness weights, informed by subsystem frequency analysis. The controller is optimized using multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA) under inequality constraints, employing a Pareto front to identify optimal solutions.

View Article and Find Full Text PDF

Decomposition-based multi-objective evolutionary algorithms (MOEAs) are popular methods utilized to address many-objective optimization problems (MaOPs). These algorithms decompose the original MaOP into several scalar optimization subproblems, and solve them to obtain a set of solutions to approximate the Pareto front (PF). The decomposition approach is an important component in them.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Unmanned aerial vehicle (UAV) path planning is a constrained multi-objective optimization problem. With the increasing scale of UAV applications, finding an efficient and safe path in complex real-world environments is crucial. However, existing particle swarm optimization (PSO) algorithms struggle with these problems as they fail to consider UAV dynamics, resulting in many infeasible solutions and poor convergence to optimal solutions.

View Article and Find Full Text PDF

Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!