Background: Circulating autoantibodies to endogenous erythropoietin (anti-Epo) are detected in human immunodeficiency virus type 1 (HIV-1)-infected patients and represent a risk factor for anemia. The aim of this study was to map the B-cell epitopes on the Epo molecule.

Methods: Serum samples from HIV-1-positive patients and healthy individuals were tested against overlapping peptides covering the entire sequence of Epo.

Results: Serum samples from anti-Epo-positive patients exhibited significant binding to Epo epitopes spanning the following sequences: amino acids 1-20 (Ep1), amino acids 54-72 (Ep5), and amino acids 147-166 (Ep12). Structural analysis of erythropoietin revealed that the immunodominant epitopes, Ep1 and Ep12, comprise the interaction interface with Epo receptor (EpoR). Autoantibodies binding to this specific region are anticipated to inhibit the Epo-EpoR interaction, resulting in blunted erythropoiesis; this phenomenon is indicated by the significantly higher Epo levels and lower hemoglobin levels of anti-Ep1-positive patients compared with anti-Ep1-negative individuals. The region corresponding to the Ep1 epitope exhibited a 63% sequence homology with the ³⁴LVCASRELERFAVNPGLLE⁵² fragment of the HIV-1 p17 matrix protein.

Conclusions: These results suggest that the main body of anti-Epo is directed against a functional domain of Epo, and that the presence of anti-Epo can be considered to be a result of a molecular mimicry mechanism, which is caused by the similarity between the Ep1 region and the p17 protein.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jir433DOI Listing

Publication Analysis

Top Keywords

amino acids
12
molecular mimicry
8
hiv-1 p17
8
p17 protein
8
serum samples
8
epo
5
fine epitope
4
epitope specificity
4
specificity anti-erythropoietin
4
anti-erythropoietin antibodies
4

Similar Publications

Objective: This study aims to describe the outcomes of COVID-19 patients treated with molnupiravir and to explore the associations with various risk factors.

Methods: We conducted a single-centre, descriptive, retrospective study without a comparison group.

Results: Out of 141 patients, 70 (49.

View Article and Find Full Text PDF

Wall shear stress modulates metabolic pathways in endothelial cells.

Metabolomics

January 2025

Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.

View Article and Find Full Text PDF

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

nT4X and nT4M: Novel Time Non-reversible Mixture Amino Acid Substitution Models.

J Mol Evol

January 2025

University of Engineering and Technology, Vietnam National University, 144 Xuan Thuy, Cau Giay, 10000, Hanoi, Vietnam.

One of the most important and difficult challenges in the research of molecular evolution is modeling the process of amino acid substitutions. Although single-matrix models, such as the LG model, are popular, their capability to properly capture the heterogeneity of the substitution process across sites is still questioned. Several mixture models with multiple matrices have been introduced and shown to offer advantages over single-matrix models.

View Article and Find Full Text PDF

Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!