[New index for soil moisture monitoring based on deltaT(s)-albedo spectral information].

Guang Pu Xue Yu Guang Pu Fen Xi

Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China.

Published: June 2011

Monitoring soil moisture by remote sensing has been an important problem for both agricultural drought monitoring and water resources management. In the present paper, we acquire the land surface temperature difference (deltaT(s)) and broadband albedo using MODIS Terra reflectance and land surface temperature products to construct the deltaT(s)-albedo spectral feature space. According to the soil moisture variation in spectral feature space, we put forward a simple and practical temperature difference albedo drought index (TDADI) and validate it using ground-measured 0-10 cm averaged soil moisture of Ningxia plain The results show that the coefficient of determination (R2) of both them varies from 0.36 to 0.52, and TDADI has higher accuracy than temperature albedo drought index (TADI) for soil moisture retrieval. The good agreement of TDADI, Albedo/LST, LST/ NDVI and TVDI for analyzing the trends of soil moisture change supports the reliability of TDADI. However, TDADI has been designed only at Ningxia plain and still needs further validation in other regions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil moisture
24
deltats-albedo spectral
8
land surface
8
surface temperature
8
temperature difference
8
spectral feature
8
feature space
8
albedo drought
8
ningxia plain
8
moisture
6

Similar Publications

Agricultural management increases the seasonal dynamics of soil-dwelling organisms compared to natural habitats. Our knowledge is very poor about the relationship between seasonal changes of soil microorganisms and the microbivorous soil arthropods. To reveal these connections, we have to know more about the seasonal changes of soil-dwelling microarthropods in croplands.

View Article and Find Full Text PDF

The most disastrous heatwaves are very extreme events with return periods of hundreds of years, but traditionally, climate research has focussed on moderate extreme events occurring every couple of years or even several times within a year. Here, we use three Earth System Model large ensembles to assess whether very extreme heat events respond differently to global warming than moderate extreme events. We find that the warming signal of very extreme heat can be amplified or dampened substantially compared to moderate extremes.

View Article and Find Full Text PDF

The microbial mechanism of maize residue decomposition under different temperature and moisture regimes in a Solonchak.

Sci Rep

January 2025

Shaanxi Province Key Laboratory of Bio-resources, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.

Soil salinization becomes serious under climate change and human activities. Although the residue decomposition contributes lots to soil carbon storage and fertility, the decomposition process and microbial mechanisms on saline-alkali soils are still vague facing climate change. We measured the mass loss of residue (0, 4, 8, 15, 30, 60 and 90 days), CO emission (every two days), and the microbial community structure (0, 4, 15 and 90 days) by using the litter bag method, gas chromatography and high-throughput sequencing technology during the residue decomposition (90 days) in a saline-alkali soil from the Tarim River Basin, China under various temperatures (15 °C, 25 °C, 35 °C) and soil moisture levels (20%, 40%, 60% water holding capacity).

View Article and Find Full Text PDF

Soil moisture is a key parameter for the exchange of substance and energy at the land-air interface, timely and accurate acquisition of soil moisture is of great significance for drought monitoring, water resource management, and crop yield estimation. Synthetic aperture radar (SAR) is sensitive to soil moisture, but the effects of vegetation on SAR signals poses challenges for soil moisture retrieval in areas covered with vegetation. In this study, based on Sentinel-1 SAR and Sentinel-2 optical remote sensing data, a coupling approach was employed to retrieval surface soil moisture over dense vegetated areas.

View Article and Find Full Text PDF

Soil water sustains terrestrial life, yet its fate is uncertain under a changing climate. We conducted a deuterium labeling experiment to determine whether elevated atmospheric carbon dioxide (CO), warming, and drought impact soil water storage and transport in a temperate grassland. Elevated CO created a wetter rootzone compared with ambient conditions, whereas warming decreased soil moisture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!