Discriminating tumor infiltrative and vasogenic brain edema in malignant gliomas is important although challenging in clinical settings. This study challenged this issue by performing voxel-wise analysis of (18)F-fluorodeoxy glucose (FDG) and (11)C-methionine positron emission tomography (PET) in peritumoral brain edemas. The authors studied ten malignant glioma and nine meningioma patients with peritumoral brain edema. A voxel-wise analysis of FDG and (11)C-methionine PET was performed in order to quantify the correlation between uptake of these tracers in normal brain tissue and peritumoral brain edema. Decoupling score of the uptake of two tracers was calculated as the z-score from the estimated correlation between uptake of the two tracers in normal brain tissue. The decoupling score was also converted into images for visual inspection. Average decoupling score in the peritumoral brain edema was calculated and compared between those obtained from malignant gliomas and meningiomas. FDG and (11)C-methionine uptake showed a reproducible linear correlation in normal brain tissue. This correlation was preserved in peritumoral edema of meningioma, but not in that of malignant gliomas. In malignant gliomas, higher (11)C-methionine uptake compared to that estimated by the FDG uptake in normal brain tissue was observed, thus suggesting that decoupling was caused by tumor infiltration. Visual inspection of the decoupling score enabled discrimination of tumor infiltrative and vasogenic edema. The average decoupling scores of the peritumoral brain edema in malignant gliomas were significantly higher than those in meningiomas (2.9 vs. 0.7, P = 0.0003). As a conclusion, FDG/(11)C-methionine uptake decoupling score can be used for the discrimination of tumor infiltrative and vasogenic brain edema. The proposed method also suggests the possibility of accurately detecting tumor infiltration into brain tissues in gliomas, providing significant information for treatment planning and follow-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-011-0688-0 | DOI Listing |
Metab Brain Dis
January 2025
Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.
Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.
View Article and Find Full Text PDFPathophysiology
January 2025
Division of Anatomical Pathology, Department of Pathology, College of Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
: Cause of death analysis is fundamental to forensic pathology. We present the case of a 9½-year-old girl with a genetically confirmed diagnosis of Dravet syndrome who died in her sleep with no evidence of motor seizure. She also had a lifelong history of recurrent pneumonias and, along with her family, had tested positive for COVID-19 10 days before death.
View Article and Find Full Text PDFNMR Biomed
March 2025
Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.
Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Pathophysiology, Medical University of Lublin, 20-090, Lublin, Poland.
Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
Futile recanalization hampers prognoses for ischemic stroke patients despite successful recanalization therapy. Allegedly, hypertension and reperfusion deficits contribute, but a better understanding is needed of how they interact and mediate disease outcome. We reassessed data from spontaneously hypertensive and normotensive Wistar-Kyoto rats (male, n = 6-7/group) that were subjected to two-hour embolic middle cerebral artery occlusion and thrombolysis in preclinical trials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!