Correlation effects on the structure and dynamics of the H3O+ hydrate: B3LYP/MM and MP2/MM MD simulations.

Phys Chem Chem Phys

School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

Published: September 2011

Two combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations, namely B3LYP/MM and MP2/MM, have been performed to investigate the possible influence of electron correlation on the structure and dynamics of the H(3)O(+) hydrate. In comparison to the previously published HF/MM results, both B3LYP/MM and MP2/MM simulations clearly reveal stronger H(3)O(+)-water hydrogen bond interactions, which are reflected in a slightly greater compactness of the H(3)O(+) hydrate. However, the B3LYP/MM simulation, although providing structural details very close to the MP2/MM data, shows an artificially slow dynamic nature of some first shell water molecules as a consequence of the formation of a long-lived H(3)O(+)···H(2)O hydrogen bonding structure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cp20823cDOI Listing

Publication Analysis

Top Keywords

h3o+ hydrate
12
b3lyp/mm mp2/mm
12
structure dynamics
8
dynamics h3o+
8
hydrate b3lyp/mm
8
mp2/mm simulations
8
correlation effects
4
effects structure
4
b3lyp/mm
4
mp2/mm
4

Similar Publications

The electrochemical nitrate reduction reaction (NORR) involves multiple hydrogenation and deoxygenation steps, which compete with the hydrogen evolution reaction (HER). Therefore, NORR driven in acidic media is challenging in spite of advantageous fast hydrogen transfers in its elementary steps. The findings presented in this article first demonstrate that the NORR is significantly activated even in acidic lithium nitrate solutions at LiNO concentrations exceeding 6 m on a Pt electrode (the highly effective catalyst for HER) by the formation of a "hydronium-in-salt" electrolyte (HISE), a new type of aqueous high concentration salt electrolyte.

View Article and Find Full Text PDF

A polymeric form of basic iron(III) acetate with an acetic acid ligand.

Acta Crystallogr C Struct Chem

December 2024

University of Melbourne, School of Chemistry, Grattan Street, Parkville, 3052, Australia.

Article Synopsis
  • - A new crystalline compound has been discovered, consisting of a ferric acetate unit and formed from hydrated iron(III) nitrate and acetic anhydride, with the chemical notation [Fe(CHO)O(CHO)].
  • - The structure features individual [FeO(OAc)] units linked by bridging acetate ions to create zigzag chains, with unique coordination of a carbonyl group from acetic acid at one of the iron centers.
  • - This is the first time an acetic acid molecule has been reported coordinating with an iron ion, showing a weaker bond that contrasts with a similar manganese compound affected by the Jahn-Teller effect.
View Article and Find Full Text PDF

Proton transfer driven by the fluctuation of water molecules in chitin film.

J Chem Phys

October 2024

Faculty of Science and Engineering, Department of Life Science, Setsunan University, Neyagawa 572-8508, Japan.

Proton-transfer mechanisms and hydration states were investigated in chitin films possessing the functionality of fuel-cell electrolytes. The absolute hydration number per chitin molecule (N) as a function of relative humidity (RH) was determined from the OH stretching bands of H2O molecules, and the proton conductivity was found to enhance above N = 2 (80%RH). The FIR spectrum at 500-900 cm-1 for 20%RH (N < 1) together with first-principles calculations clearly shows that the w1 site has the same hydration strength as the w2 site.

View Article and Find Full Text PDF

Controllable Synthesis and Ultrahigh Proton Conduction of a Hydrogen-Bond Network.

Inorg Chem

October 2024

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China.

The functionalization of polyoxometalates with organic ligands provides a new-style strategy to accurately incorporate polyoxometalates with advanced functional organic moieties on their surfaces, the development of which has attracted increasing research interest due to the potential applications. A germanium tungstate Na(HO)[{Ru(bpy)}{WO(CO)}(GeWO)]·27HO (bpy = 2,2'-bipyridine) with two ligands covalently modified was triumphantly synthesized, using the conventional one-pot hydrothermal method. It was systematically characterized by thermogravimetric analysis (TGA), elemental analysis, infrared (IR) spectroscopy, single-crystal X-ray diffraction, X-ray photoelectron spectroscopy (XPS), powder diffraction (PXRD), scanning electronic microscopy (SEM), and ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to examine the thermodynamic and structural aspects of the transfer of the classical hydronium ion (HO) across a water/1,2-dichloroethane (DCE) interface assisted by the phase-transfer catalyst (PTC) tetrakis(pentafluorophenyl) borate anion (TPFB). The free energy of transfer from water to DCE of the HO-TPFB ion pair is calculated to be 6 ± 1 kcal/mol, significantly less than that of the free hydronium ion (17 ± 1 kcal/mol). The ion pair is relatively stable at the interface and in the organic phase when it is accompanied by three water molecules with a small barrier to dissociation that supports its utility as a PTC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!