We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.36.003221 | DOI Listing |
Rev Sci Instrum
January 2025
National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China.
The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) has been operated as a user facility for over five years. To further meet the growing demands of modern science, an upgrade project for an infrared-terahertz free electron laser facility based on CTFEL has been proposed to broaden the frequency range from 0.1-4.
View Article and Find Full Text PDFIn this Letter, we present a fiber-optic radio frequency (RF) transmission scheme based on phase modulation with an interferometric detection structure. A self-developed Michelson interferometer (MI) is used to demodulate the frequency signal via an electrically controlled optical shifter. The two complementary outputs from the interferometer are detected using a balanced detector, which suppresses the common-mode noise of the fiber link.
View Article and Find Full Text PDFSensors (Basel)
November 2024
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
Atmospheric temperature information in the near space is of great academic significance and engineering value to support the development and utilization of the near space. Based on the theory of O molecular dayglow spectroscopy and the mechanism of atmospheric radiative transfer, a method is proposed for the joint retrieval of temperature profiles in the near space using O(aΔ) and O(b∑ ) bands dayglow spectroscopy signal with the self-absorption effect. First, the temperature dependence of O(aΔ) and O(b∑ ) bands dayglow is investigated, and the influence of the self-absorption effect on the radiative transfer characteristics is analyzed in the limb-view mode.
View Article and Find Full Text PDFWe present a low-resource and robust optical implementation of the four-dimensional Grover coin, a four-port linear-optical scatterer that augments the low dimensionality of a regular beam-splitter. While prior realizations of the Grover coin required a potentially unstable ring cavity to be formed, this version of the scatterer does not exhibit any internal interference. When this Grover coin is placed in another system, it can be used for interferometry with a higher-dimensional set of optical field modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!